Search: H673 Degenerative Myelopathy, DM/info-lgs@agrotis.it/page/15/results/450745.pdf

Need a new search?

If you didn't find what you were looking for, try a new search!

Leukoencephalomyelopathy – LEMP (Leonberger)

Leukoencephalomyelopathy (LEMP) is a severe, degenerative neural disorder that occurs in young dogs and causes a progressive loss of muscle coordination. The disorder is caused by a recessive mutation to the gene NAPEPLD. The variant of LEMP analysed in this test occurs in the Leonberger. A related variant is found in the Great Dane and Rottweiler.

Mielopatia degenerativa Esone 2 (DM Esone 2)

La mielopatia degenerativa canina (DM) è una malattia neurodegenerativa progressiva incurabile del midollo spinale. Le malattie neurodegenerative sono caratterizzate da una progressiva perdita di neuroni nel sistema nervoso centrale (SNC) che porta a carenze funzionali. Nel caso della DM, la regione interessata è il midollo spinale, che provoca atassia (perdita di coordinazione). La DM è simile per molti versi alla sclerosi laterale amiotrofica (SLA) nell’uomo.

Questa variante della malattia, a volte designata come SOD1B o come mielopatia degenerativa dell’esone 2, si verifica in molte razze diverse. È causata da una mutazione autosomica recessiva con penetranza incompleta del gene SOD1. Sebbene la mutazione si trovi in molte razze, la malattia viene raramente diagnosticata in razze o cani di razza mista diversi da quelli menzionati per questo test. È stata osservata anche una variante correlata specifica del Bovaro del Bernese. Quando si testa un bovaro bernese per DM, è importante testare entrambe queste varianti, anziché una sola.

Mielopatia degenerativa dell’esone 1 (DM Esone 1) – Bovaro del Bernese

La mielopatia degenerativa canina (DM) è una malattia neurodegenerativa progressiva incurabile del midollo spinale. Le malattie neurodegenerative sono caratterizzate da una progressiva perdita di neuroni nel sistema nervoso centrale (SNC) che porta a carenze funzionali. Nel caso della DM, la regione interessata è il midollo spinale, che provoca atassia (perdita di coordinazione). La DM è simile per molti versi alla sclerosi laterale amiotrofica (SLA) nell’uomo.

Questa variante della malattia, nota come SOD1A o Mielopatia Degenerativa Esone 1, si verifica specificamente nel Bovaro del Bernese. È causata da una mutazione autosomica recessiva con penetranza incompleta del gene SOD1. Una variante correlata è stata osservata in una vasta gamma di razze. Quando si testa un bovaro bernese per DM, è importante testare entrambe queste varianti, anziché una sola.

Mielopatia Degenerativa Esone 2 (DM Esone 2) (Laboratorio Esterno con brevetto)

La mielopatia degenerativa canina (DM) è una malattia neurodegenerativa progressiva incurabile del midollo spinale. Le malattie neurodegenerative sono caratterizzate da una progressiva perdita di neuroni nel sistema nervoso centrale (SNC) che porta a carenze funzionali. Nel caso della DM, la regione interessata è il midollo spinale, che provoca atassia (perdita di coordinazione). La DM è simile per molti versi alla sclerosi laterale amiotrofica (SLA) nell’uomo.

Questa variante della malattia, a volte designata come SOD1B o come mielopatia degenerativa dell’esone 2, si verifica in molte razze diverse. È probabilmente causata da una mutazione autosomica recessiva con penetranza incompleta del gene SOD1. La variante si trova in molte razze, ma la malattia viene raramente diagnosticata in razze o cani di razza mista diversi da quelli menzionati per questo test.

Andatura sincronizzata (DMRT3-correlata)

Tutti i cavalli hanno tre andature naturali (passo, trotto e galoppo). Alcune razze (le razze con andatura) mostrano una o più andature aggiuntive, in particolare a velocità intermedie. Questa capacità di esibire forme alternative di andatura è chiamata andatura sincronizzata e il test del DNA per questo tratto è noto come SynchroGait. Una mutazione è stata trovata nel gene del fattore di trascrizione 3 (DMRT3) correlato al doppio sesso e al mab-3. Questo gene svolge un ruolo cruciale nello sviluppo dei neuroni del midollo spinale che controllano il movimento e la locomozione degli arti. In particolare, il gene è coinvolto nella formazione di interneuroni inibitori nel midollo spinale, che sono fondamentali per coordinare i movimenti muscolari durante le varie andature. La mutazione è vista come un importante fattore genetico ed è osservata in molte razze di cavalli.

Dun dilution

The Dun dilution gene lightens the coat colour of the horse by lightening the body colour, leaving the head, lower legs, mane and tail undiluted. Dun is also typically characterized by “primitive markings”, allmost all dun horses possess at least the dorsal stripe, but the presence of the other primitive markings varies. Other common markings may include horizontal striping on the legs, transverse striping across the shoulders, and lighter guard hairs along the edges of a dark mane and tail. Dun diluted coat colour with primitive markings is considered the “wild-type” colour and is found in wild equids such as przewalski horses. Dun dilutes both red and black pigment, and the resulting colors range from apricot, golden, dark gray, olive and many more subtle variations. A horse can also carry mutations for other modifying genes which can further affect its coat colour. The Coat Colour Dun dilution test (P660) tests for the genetic status of the TBX3 gene. This gene has three variants (alleles); allele D is dominant over the alleles nd1 and nd2; allele nd1 is dominant over nd2. The dominant allele D results in Dun dilution with primitive markings. Allele nd1 does not dilute the coat colour of the horse, primitive markings are present but the expression is variable. Allele nd2 does not have an effect on the basic colour.

The Coat Colour Dun dilution test encloses the following results, in this scheme the results of the Coat Colour Dun dilution test are shown in combination with the possible results for the tests that determine the basic Coat Colour (Coat Colour Chestnut and Coat Colour Agouti test):

Result Dun dilution

Result Chestnut + Agouti

Coat Colour

Description

nd2/nd2

e/e + A/A, A/a or a/a

 

Chestnut, Sorrel. No primitive markings

Two copies of the nd2 allele. Coat colour is not diluted and primitive markings are absent. The basic colour chestnut/sorrel is not modified unless modified by other colour modifying genes. It can only pass on allele nd2 to its offspring.

nd2/nd2

E/E or E/e + A/A or A/a

Bay, Brown. No primitive markings

Two copies of the nd2 allele. Coat colour is not diluted and primitive markings are absent. The basic colour bay/brown is not modified unless modified by other colour modifying genes. It can only pass on allele nd2 to its offspring.

nd2/nd2

E/E or E/e + a/a

Black. No primitive markings

Two copies of the nd2 allele. Coat colour is not diluted and primitive markings are absent. The basic colour black is not modified unless modified by other colour modifying genes. It can only pass on allele nd2 to its offspring.

nd1/nd2

e/e + A/A, A/a or a/a

 

 

Chestnut, Sorrel. Primitive markings may be present

One copy of the nd1 allele and one copy of the nd2 allele. The nd1 allele is dominant over the nd2 allele. Coat colour is not diluted. Primitive markings may be present. The colour can be further modified by other colour modifying genes. It can pass on either allele nd1 or nd2 to its offspring.

nd1/nd2

E/E or E/e + A/A or A/a

Bay, Brown. Primitive markings may be present

One copy of the nd1 allele and one copy of the nd2 allele. The nd1 allele is dominant over the nd2 allele. Coat colour is not diluted. Primitive markings may be present. The colour can be further modified by other colour modifying genes. It can pass on either allele nd1 or nd2 to its offspring.

nd1/nd2

E/E or E/e + a/a

Black. Primitive markings may be present

One copy of the nd1 allele and one copy of the nd2 allele. The nd1 allele is dominant over the nd2 allele. Coat colour is not diluted. Primitive markings may be present. The colour can be further modified by other colour modifying genes. It can pass on either allele nd1 or nd2 to its offspring.

nd1/nd1

e/e + A/A, A/a or a/a

 

Chestnut, Sorrel. Primitive markings may be present

Two copies of the nd1 allele. Coat colour is not diluted. Primitive markings may be present. The colour can be further modified by other colour modifying genes. It can only pass on allele nd1 to its offspring.

nd1/nd1

E/E or E/e + A/A or A/a

Bay, Brown. Primitive markings may be present

 

Two copies of the nd1 allele. Coat colour is not diluted. Primitive markings may be present. The colour can be further modified by other colour modifying genes. It can only pass on allele nd1 to its offspring.

nd1/nd1

E/E or E/e + a/a

Black. Primitive markings may be present

 

Two copies of the nd1 allele. Coat colour is not diluted. Primitive markings may be present. The colour can be further modified by other colour modifying genes. It can only pass on allele nd1 to its offspring.

D/nd2

e/e + A/A, A/a or a/a

 

Red dun. With primitive markings

One copy of the dominant D allele and one copy of the nd2 allele. Coat colour is dun-diluted with primitive markings. The colour can be further modified by other colour modifying genes. It can pass on either allele D or nd2 to its offspring.

D/nd2

E/E or E/e + A/A or A/a

Bay dun. With primitive markings

One copy of the dominant D allele and one copy of the nd2 allele. Coat colour is dun-diluted with primitive markings. The colour can be further modified by other colour modifying genes. It can pass on either allele D or nd2 to its offspring.

D/nd2

E/E or E/e + a/a

Blue dun. With primitive markings

One copy of the dominant D allele and one copy of the nd2 allele. Coat colour is dun-diluted with primitive markings. The colour can be further modified by other colour modifying genes. It can pass on either allele D or nd2 to its offspring.

D/nd1

e/e + A/A, A/a or a/a

 

Red dun. With primitive markings

One copy of the dominant D allele and one copy of the nd1 allele. Coat colour is dun-diluted with primitive markings. The colour can be further modified by other colour modifying genes. It can pass on either allele D or nd1 to its offspring.

D/nd1

E/E or E/e + A/A or A/a

Bay dun. With primitive markings

One copy of the dominant D allele and one copy of the nd1 allele. Coat colour is dun-diluted with primitive markings. The colour can be further modified by other colour modifying genes. It can pass on either allele D or nd1 to its offspring.

D/nd1

E/E or E/e + a/a

Blue dun. With primitive markings

One copy of the dominant D allele and one copy of the nd1 allele. Coat colour is dun-diluted with primitive markings. The colour can be further modified by other colour modifying genes. It can pass on either allele D or nd1 to its offspring.

D/D

e/e + A/A, A/a or a/a

Red dun. With primitive markings

Two copies of the dominant D allele. Coat colour is dun-diluted with primitive markings. The colour can be further modified by other colour modifying genes. It can only pass on allele D to its offspring.

D/D

E/E or E/e + A/A or A/a

Bay, Classic, Zebra dun. With primitive markings

Two copies of the dominant D allele. Coat colour is dun-diluted with primitive markings. The colour can be further modified by other colour modifying genes. It can only pass on allele D to its offspring.

D/D

E/E or E/e + a/a

Blue, Mouse dun. With primitive markings

Two copies of the dominant D allele. Coat colour is dun-diluted with primitive markings. The colour can be further modified by other colour modifying genes. It can only pass on allele D to its offspring.

Roan

Roan is a white patterning coat colour trait of intermixed white and coloured hairs in the body while the head, lower legs, mane and tail remain colored. Roan horses are born with the pattern, though it may not be obvious until the foal coat is shed. The white and coloured hairs are evenly mixed in horses that inherit the classic Roan gene, which can differentiate this from several mimic patterns called roaning. Roaning patterns tend to be uneven in the distribution of white hairs and the inheritance of roaning has not been defined. The mutation causing the Roan coat colour has not yet been identified. The Coat Roan test (P659) tests for DNA markers that are associated with Roan coat colour in several breeds, the DNA markers can be used to determine if a horse has the Roan mutation and how many copies. This test detects three variants (alleles), Rn, Rn* and N. The allele Rn is dominant. One or two copies of the Rn allele result in a Roan coat colour. The allele Rn* is very uncommon and not always associated with the Roan coat colour, this allele has only been observed in Tennessee Walking horses and Rocky Mountain horses. The allele N is recessive and does not have an effect on the basic colour.

The Coat Colour Roan test encloses the following results, in this scheme the results of the Coat Colour Roan test are shown in combination with the possible results for the tests that determine the basic Coat Colour (Coat Colour Chestnut and Coat Colour Agouti test):

Result Roan

Result Chestnut + Agouti

Coat Colour

Description

N/N

e/e + A/A, A/a or a/a

 

Chestnut, Sorrel

 

Not Roan. The basic colour chestnut/sorrel is not modified unless modified by other colour modifying genes. It can only pass on allele N to its offspring.

N/N

E/E or E/e + A/A or A/a

Bay, Brown

Not Roan. The basic colour bay/brown is not modified unless modified by other colour modifying genes. It can only pass on allele N to its offspring.

N/N

E/E or E/e + a/a

Black

Not Roan. The basic colour black is not modified unless modified by other colour modifying genes. It can only pass on allele N to its offspring.

Rn/N

e/e + A/A, A/a or a/a

 

Chestnut/sorrel Roan

One copy of the dominant Rn allele. The colour is chestnut/sorrel roan, unless modified by other colour modifying genes. It can pass on either allele N or Rn to its offspring.

Rn/N

E/E or E/e + A/A or A/a

Brown/bay Roan

One copy of the dominant Rn allele. The colour is brown/bay roan, unless modified by other colour modifying genes. It can pass on either allele N or Rn to its offspring.

Rn/N

E/E or E/e + a/a

Black Roan

One copy of the dominant Rn allele. The colour is black roan, unless modified by other colour modifying genes. It can pass on either allele N or Rn to its offspring.

Rn*/N

e/e + A/A, A/a or a/a

Chestnut/sorrel or Chestnut/sorrel Roan

One copy of the uncommon Rn* allele. The colour can be chestnut/sorrel or chestnut/sorrel roan, unless modified by other colour modifying genes. It can pass on either allele N or Rn* to its offspring.

Rn*/N

E/E or E/e + A/A or A/a

Brown/bay or Brown/bay Roan

One copy of the uncommon Rn* allele. The colour can be brown/bay or brown/bay roan, unless modified by other colour modifying genes. It can pass on either allele N or Rn* to its offspring.

Rn*/N

E/E or E/e + a/a

Black or Black Roan

One copy of the uncommon Rn* allele. The colour can be black or black roan, unless modified by other colour modifying genes. It can pass on either allele N or Rn* to its offspring.

Rn/Rn

e/e + A/A, A/a or a/a

Chestnut/sorrel Roan

Two copies of the dominant Rn allele. The colour is chestnut/sorrel roan, unless modified by other colour modifying genes. It can only pass on allele Rn to its offspring.

Rn/Rn

E/E or E/e + A/A or A/a

Brown/bay Roan

Two copies of the dominant Rn allele. The colour is brown/bay roan, unless modified by other colour modifying genes. It can only pass on allele Rn to its offspring.

Rn/Rn

E/E or E/e + a/a

Black Roan

Two copies of the dominant Rn allele. The colour is black roan, unless modified by other colour modifying genes. It can only pass on allele Rn to its offspring.

Rn/Rn*

e/e + A/A, A/a or a/a

Chestnut/sorrel Roan

One copy of the dominant Rn allele and one copy of the uncommon Rn* allele. The colour is chestnut/sorrel roan, unless modified by other colour modifying genes. It can pass on either allele Rn or Rn* to its offspring.

Rn/Rn*

E/E or E/e + A/A or A/a

Brown/bay Roan

One copy of the dominant Rn allele and one copy of the uncommon Rn* allele. The colour is brown/bay roan, unless modified by other colour modifying genes. It can pass on either allele Rn or Rn* to its offspring.

Rn/Rn*

E/E or E/e + a/a

Black Roan

One copy of the dominant Rn allele and one copy of the uncommon Rn* allele. The colour is black roan, unless modified by other colour modifying genes. It can pass on either allele Rn or Rn* to its offspring.

Rn*/Rn*

e/e + A/A, A/a or a/a

Chestnut/sorrel or Chestnut/sorrel Roan

Two copies of the uncommon Rn* allele. The colour can be chestnut/sorrel or chestnut/sorrel roan, unless modified by other colour modifying genes. It can only pass on allele Rn* to its offspring.

Rn*/Rn*

E/E or E/e + A/A or A/a

Brown/bay or Brown/bay Roan

Two copies of the uncommon Rn* allele. The colour can be brown/bay or brown/bay roan, unless modified by other colour modifying genes. It can only pass on allele Rn* to its offspring.

Rn*/Rn*

E/E or E/e + a/a

Black or Black Roan

Two copies of the uncommon Rn* allele. The colour can be black or black roan, unless modified by other colour modifying genes. It can only pass on allele Rn* to its offspring.

Contatti

Agrotis S.r.l.
Via Bergamo 292
26100 Cremona
Italia

+39-0372-560828
info-lgs@agrotis.it

Name
Questo campo serve per la convalida e dovrebbe essere lasciato inalterato.

Informativa sulla Privacy

Privacy

VHLGenetics prende molto seriamente la protezione della tua privacy, pertanto trattiamo i tuoi dati personali nel modo più confidenziale ed accurato possibile. La nostra politica sulla privacy copre tutti i dati personali che raccogliamo e utilizziamo, compresi i dati del cliente forniti dall’utente, ma anche, ad esempio, i dati su chi visita il nostro sito Web e si iscrive alle nostre newsletter.

VHLGenetics non utilizzerà i tuoi dati a meno che tu non acconsenta (o abbia in precedenza acconsentito) a farlo o se é necessario per fornirti prodotti o servizi. VHLGenetics non vende i tuoi dati personali a terzi. VHLGenetics fornisce questi dati solo a terze parti coinvolte nell’esecuzione dell’accordo tra VHLGenetics e te stesso, come i responsabili del trattamento dei dati presso i nostri negozi online e le comunicazioni tra laboratori nei Paesi Bassi, Belgio e Germania, se necessario per condurre il test.

To serve organisations better, we offer our DNA services under the brands CombiBreed®, CombiGen®, VHLGenetics® and SNPExpert, whose websites you can visit at www.combibreed.comwww.combigen.comwww snpexpert.com and www.vhlgenetics.com respectively. We also use our brands’ local domain names sometimes, such as combibreed.fr in France and combibreed.it in Italy. VHLGenetics non può elaborare questi dati in nessun altro modo senza il tuo espresso consenso.

I dettagli di contatto di VHLGenetics sono i seguenti:

  • Dr. Van Haeringen Laboratorium BV, Agro Business Park 100, NL-6708 PW Wageningen, the Netherlands
  • Dr. Van Haeringen Polygen bvba, Kasteellaan 7, BE-2390 Malle, Belgium
  • Certagen GmbH, Marie-Curie-Strasse 1, D-53359 Rheinbach, Germania
  • Agrotis S.r.l., Via Bergamo 292, 26100 Cremona, Italia
  • BioBank AS, Holsetgata 22, 2317 Hamar, Norvegia
  • CMSCH, Benešovská 123, 25209 Hradištko, Repubblica Ceca
  • Feragen, Strubergasse 26, 5020 Salzburg, Austria
  • INNO, Rua Cândido de Sousa 15, 47110-503 Braga, Portogallo
  • Laboratorios Labocor S.L., C/ ALAMILLO 41, 8770 – COLMENAR VIEJO MADRID, Spagna
  • PharmaDNA, Demokratu 53, 48485 Kaunas, Lituania
  • Progènes-AND, Gaspern Vian , 29640 Plougonven, Francia
  • Weatherbys Scientific, Irish Equine Centre Johnstown , Co. Kildare , Ireland & UK
  • Zoolyx, Zonnestraat 3, 9300 Aalst, Belgio

In caso di domande, puoi anche contattare il nostro servizio clienti all’indirizzo info@VHLGenetics.com. Per saperne di più sui marchi sottostanti, visitare www.dnaisourcore.com.

Policy

  1. Se effettui un ordine con noi, VHLGenetics raccoglie i dati che fornisci, come il tuo nome, indirizzo e-mail, indirizzo di casa e dettagli di pagamento, inclusi i dati del tuo conto bancario o della carta di credito, ma li utilizza solo per inviarti la fattura relativa all’utilizzo e fornitura dei nostri servizi e per tenerti aggiornato.
  1. Se una terza parte, come un’azienda o uno studio veterinario, effettua ordini e/o paga fatture in virtù di un accordo tra l’utente e la terza parte, VHLGenetics invierà i risultati dell’ordine alla terza parte.
  1. Se si utilizzano i nostri siti Web, i dati vengono raccolti automaticamente dalle piattaforme tecnologiche che lo rendono possibile. Ad esempio, il tuo browser web o il tuo dispositivo mobile possono condividere determinati dati con VHLGenetics se questi dispositivi comunicano con il nostro sito Web.
  1. Utilizziamo i tuoi dati per informarti elettronicamente (ad esempio via email) di offerte speciali, campagne di VHLGenetics e di nuovi prodotti dei nostri partner fino a quando non viene cancellata la tua registrazione ai nostri siti.
  1. Se ti registri alla nostra newsletter o richiedi informazioni, registreremo il tuo nome, indirizzo e indirizzo e-mail e ti invieremo i dettagli delle nostre offerte e/o promozioni via e-mail e/o potremmo contattarti per offerte e promozioni.
  1. VHLGenetics non vende i tuoi dati. VHLGenetics non venderà o fornirà i tuoi dati personali a terzi e fornirà questi dati solo a terzi coinvolti nella fornitura dei servizi concordati con te. Il nostro personale e le terze parti che assumiamo devono rispettare la riservatezza dei dati dell’utente.
  1. Partner. VHLGenetics utilizza partner per gestire e archiviare i nostri dati. Questi partner possono trovarsi sia all’interno che all’esterno dell’UE. VHLGenetics sceglie partner in grado di proteggere adeguatamente i dati personali, sia seguendo il Privacy Shield UE-USA, le Regole aziendali vincolanti o firmando accordi relativi al GDPR. Se necessario, VHLGenetics stipula accordi di GDPR con tutti i nostri partner.
  1. Conservazione dei dati. VHL conserva i documenti cartacei che i clienti inviano per cinque anni. Restituiremo i documenti cartacei ai clienti se lo richiederanno, ma potremmo farne delle copie. Distruggeremo materiali e oggetti inviati dal cliente una volta terminato i contratti, a meno che non riteniamo che debbano essere conservati più a lungo. Rimuoveremo i tuoi dati personali se ce lo chiedi, ma tieni presente che copie di questi dati potrebbero essere conservate nei backup.
  1. Sicurezza. Anche la protezione dei dati è importante. Se inserisci i tuoi dati bancari per rinnovare automaticamente l’abbonamento, ci assicuriamo che questi dettagli siano crittografati con SSL (Secure Socket Layer). Ricorda che nessuna sicurezza è sicura al 100% e che neppure VHLGenetics può garantirla al 100%. Per rendere sicuro l’utilizzo dei tuoi dati, abbiamo adottato misure organizzative e tecniche all’interno della nostra organizzazione.
  1. Pagamenti tramite il negozio online. Se inserisci i dettagli della tua carta di credito o altri dettagli bancari nel nostro negozio online, tieni presente che un elaboratore di pagamenti esterno elaborerà i tuoi pagamenti.
  1. Modifiche alla politica sulla privacy. La presente Informativa sulla privacy può essere aggiornata in risposta a modifiche della legislazione applicabile o a cambiamenti all’interno della nostra attività o nei servizi che forniamo. Vi informeremo di eventuali modifiche attraverso questa pagina; pertanto ti consigliamo di leggere regolarmente questa Informativa sulla privacy per tenerti aggiornato. Qualora dovessimo apportare modifiche che ti coinvolgono seriamente, ti informeremo via e-mail o tramite i nostri servizi.
  1. I tuoi diritti sui tuoi dati personali. Hai il diritto di revocare il tuo consenso al nostro utilizzo dei tuoi dati personali; e puoi anche esaminare i tuoi dati per correggerli o rimuoverli se i dati che abbiamo archiviato sono errati o illegali.

Se c’è qualcosa che vorresti sapere sull’Informativa sulla privacy di VHLGenetics, puoi contattarci tramite il nostro sito Web o tramite i nostri dettagli di contatto sopra. Nel caso in cui non abbiamo risolto correttamente i reclami su come utilizziamo i tuoi dati, puoi presentare un reclamo all’Autorità olandese per la protezione dei dati.

Pearl dilution

The Pearl dilution gene lightens the coat colour of the horse by diluting the red pigment. A chestnut basic colour is diluted to a pale, uniform apricot colour of body, mane and tail. Skin coloration is also pale. Pearl dilution is also referred to as the ‘Barlink Factor.’ The Coat Colour Pearl dilution test (P783) tests for the genetic status of the SLC45A2 gene. This gene has two variants (alleles). The allele Prl, causing the Pearl dilution is recessive. This means that only horses with two copies of the Prl allele have a lightened coat, mane and tail, in addition to bright eye colors. The dominant allele N does not have an effect on the basic coat colour.

Pearl dilution interacts with Cream dilution to produce pseudo-double dilute phenotypes including pale skin and blue/green eyes. Therefore if a horse has one copy of the Prl allele and Cream dilution (Cr allele) is also present, this results in a pseudo-double dilute, also called pseudo-cremellos or pseudo-smoky cream

A horse can also carry mutations for other modifying genes which can further affect its coat colour.

The Coat Colour Pearl dilution test encloses the following results, in this scheme the results of the Coat Colour Pearl dilution test are shown in combination with the possible results for the tests that determine the basic Coat Colour (Coat Colour Chestnut and Coat Colour Agouti test):

Result Pearl dilution

Result Chestnut + Agouti

Coat Colour

Description

N/N

e/e + A/A, A/a or a/a

Chestnut, Sorrel

Non-dilute. The basic colour chestnut/sorrel is not diluted unless modified by other colour modifying genes. It can only pass on allele N to its offspring.

N/N

E/E or E/e + A/A or A/a

Bay, Brown

Non-dilute. The basic colour bay/brown is not diluted unless modified by other colour modifying genes. It can only pass on allele N to its offspring

N/N

E/E or E/e + a/a

Black

Non-dilute. The basic colour black is not diluted unless modified by other colour modifying genes. It can only pass on allele N to its offspring

N/Prl

e/e + A/A, A/a or a/a

 

Chestnut, Sorrel

One copy of the recessive Prl allele. The basic colour chestnut/sorrel is not diluted unless modified by other colour modifying genes. If cream dilution is also present, this results in a pseudo-double dilute. It can pass on either allele N or Prl to its offspring.

N/Prl

E/E or E/e + A/A or A/a

Bay, Brown

One copy of the recessive Prl allele. The basic colour bay/brown is not diluted unless modified by other colour modifying genes. If cream dilution is also present, this results in a pseudo-double dilute. It can pass on either allele N or Prl to its offspring.

N/Prl

E/E or E/e + a/a

Black

One copy of the recessive Prl allele. The basic colour black not diluted unless modified by other colour modifying genes. If cream dilution is also present, this results in a pseudo-double dilute. It can pass on either allele N or Prl to its offspring.

Prl/Prl

e/e + A/A, A/a or a/a

 

Pearl dilution

Two copies of the recessive Prl allele. The basic colour chestnut/sorrel is diluted to a pale, uniform apricot colour of body hair, mane and tail. This colour can be further modified by other colour modifying genes. It can only pass on allele Prl to its offspring.

Prl/Prl

E/E or E/e + A/A or A/a

Pearl dilution

Two copies of the recessive Prl allele. The basic colour bay/brown is diluted to lightened coat, mane and tail. This colour can be further modified by other colour modifying genes. It can only pass on allele Prl to its offspring.

Prl/Prl

E/E or E/e + a/a

Pearl dilution

Two copies of the recessive Prl allele. The basic colour black is diluted to lightened coat, mane and tail. This colour can be further modified by other colour modifying genes. It can only pass on allele Prl to its offspring.

Introduction to Genetics

History

Since the 19th century experiments have been conducted on the heredity of various organisms. The heredity was determined by observations of organisms – that the next generation gets one copy from each factor from each parent, and subsequently passing the factor on to following generations (Durmaz et al., 2015). The factors include for example colour, height, or shape of the organism. Pioneers Gregor Mendel and Augustinian Friar were scientist studying genetics scientifically. Gregor Mendel performed breeding experiments with hybridizing pea plants, in which different traits were traced. The traits included colour of the plants and round or wrinkled peas. The pioneer, after reporting the first breeding experiments, died in 1884. Little did he know that he would end up in biology textbooks.

Astounding results were observed by Mendel, the scientist saw traits were independently transmitted from each other (Dijk, Weissing, & Ellis, 2018). The independent transmission of traits is based on the position of genes on the corresponding chromosome. The progeny receives half of the chromosomes of both parents. If the gene is positioned on a chromosome – which is not passed down the lineage – the progeny does not express the gene. Therefore, if an experiment is conducted on various traits encoded by the corresponding genes. The progeny expresses different variation of traits in contrast to the parents.

Although, Mendel started the experiments on heredity of organisms. The scientist did not introduce the words “genetics” or “gene”. Later in the 20th, the scientific community century begun to focus on more breeding related experiments, and thereby referring to the results indicated by Mendel. The heredity of organisms would be called “genetics” and the factor that expresses the trait of a species was described as “gene” (Portin, Wilkins, 2017). It was the start of a new discipline in the scientific community.

Introduction to genetics

The introduction of the study genetics leaded to genetic research on a more molecular level. The molecular level experiments were more focussed on the structure and biosynthetic pathways that are needed to express a certain trait. In the first stages of genetic research on various structures and biosynthetic pathways, scientists suggested corresponding proteins were responsible for the induction of the perceived traits. However, following-up research leaded to the – todays well known double helix structured DNA – to be the encoding factor that expresses the perceiving trait.

Nowadays, DNA structures, which have the typical double helix structure, are seen everywhere. Genetic research elucidated more specification on the structure of the DNA strand and stated DNA was an information molecule (Travers & Muskhelishvili, 2015). The DNA strands are made up of so called “nucleic acids”, which are based on four nucleotides adenine (A), thymine (T), cytosine (C) and guanine (G). Groups of nucleic acids, three nucleotides, encode for the amino acids and amino acids are consecutive the basis of entire chromones. As it has been highlighted in modern society are the Homo Sapiens exist of 46 chromosomes. The chromosomes are the building blocks of the human genome.

Mutations and phenotypes

Progressive research broadened the insights on the DNA structures of various species. The DNA structure consists of information molecules, which encode for structural or active biosynthetic systems were the organisms are made up on. Genetic research has indicated changes on the prescribed encoded DNA strand. The changes are called mutations. Mutations are alterations in the DNA strand. The mutations can change a trait such as eye colour, skin colour or height. These traits are all observative characteristics that can be seen by the eye, also called phenotypes. Therefore, when a gene is mutated, the phenotype also changes. Besides, there are non-observative characteristics, which are alternation of the gene that are not visible by the human eye. Mutation for example organ failures, diabetes, or heart defects.

Mutations are commonly experienced as something that should not occur. However, there are multiple outcomes at alternations of DNA, the mutation did not express in a coding region, and therefore no phenotypical changes are witnessed. The alternation has taken place in an active coding region, and subsequently effecting the phenotype of an organism. These are the most common interpretations of DNA alternations.

Implementations of DNA alternations

Implementations of DNA mutations is commonly used in modern society. DNA mutation can be used as genetic markers for the identification of genetic variation, hereditary carriers and dominant inherent. Genetic variation in animals is experienced in everyday life, since every animal has a unique genotype that encodes for a unique phenotype that can be seen. Heredity carriers are more scientifically substantiated as where in the phenotype is not visible by the human eye. In general, the terms recessive and dominant are mostly used. Recessive means the organism has inherited the recessive allele (certain region of DNA) and dominant indicates the organisms has inherited the dominant allele.

The Hereditary carrier

The hereditary carrier is an organism which has inherited a recessive allele for a specific trait, but generally does not express the trait. Although the trait is not expressed by the organism, the organism is able to pass the allele on to the next generation. This way, a specific mutation can be present in multiple generations without noticing. Another possibility is in which the organisms have a dominant inherited allele. When an organism has a dominant and recessive allele for a specific allele, the dominant allele will be expressed. Nevertheless, if a hereditary carrier inherits a recessive allele for the specific trait it carries. This will result in the expression of the inhibited trait.

Punnet Square

The well-known Punnet Square identifies the percentual change of an organism to be homozygote dominant (AA), homozygote recessive (aa) or heterozygote (Aa) (Edwards, 2012). If both parents are carriers and heterozygote the outcome would be 25% homozygote, 25% homozygote and 50% heterozygote. Resulting an allele mutation on the dominate allele would lead to 75% expression on the next generation. However, if the allele mutation was on the recessive allele only 25% of the next generation would express the recessive allele. In addition, spontaneous alternations can also cause genetic variation on alleles, and therefore lead to unexpected results. As for example the Punnet square is used to determine the percentual chance of the lineages genotype. A spontaneous alternation can change a phenotype, for example the hair colour. The linage can have different phenotypes then the ancestors if the breeding continues with the mutation.

Karyotyping

Alleles are specific regions on the chromosome of an organism. The chromosome can be visualized using the technique karyotyping. During karyotyping all the chromosomes are coloured, and subsequently counted and examined using a microscope. Malfunctions in the chromosome assembly can be identified as irregularity of chromosomes or sometimes the number of chromosomes can be reduced or increased. Karyotyping is one of VHLGenetics genotyping techniques.

Business view

VHLGenetics DNA testing is performed at two laboratories. The head office is in Wageningen, the other laboratory is in Germany. DNA tests are performed under various accreditations, certifications, and memberships of organizations such as ICAR and IS. The main goal of VHLGenetics is to provide optimal DNA services for their customers. The core competence is the standardization of work processes in the laboratories. This while remaining flexibility in adding new tests and technologies to the portfolio. The DNA services have been developed from knowledge and experience gained in the last 30 years. DNA services are offered in a wide variety including plants and animals. The service involves mainly KASP, real-time PCR, capillary electrophoresis, and Thermo Fisher Scientific Targeted Genotyping by Sequencing®.

Interpretation Testresults

Availability of DNA tests

Nowadays, scientific articles do not often publish mutations that are also present in other breeds. Therefore, mutations that are described and validated in one breed can also be found in other breeds. The occurrence of these mutations in other breeds is determined by laboratories that carry out the tests. It is difficult to estimate how high the reliability is for a certain test for a particular breed.

The above basis applies in general to hereditary diseases. Hereditary diseases are passed on from one generation to another through defective genes. Nevertheless, inheritance of a disease remains a biological process, and therefore exceptions are still possible. The specific information for a test gives more information about possible deviations.

Our tests do not make recommendations on breeding decisions

Our DNA tests offer you insight into the composition of your animal’s DNA. If possible, we will try to inform you of the optimal choice of tests for your personal situation. You should be aware that our laboratories are not responsible for the breeding decisions that you take. This is due to the complexity of the variation in tests and breeds. We recommend that, for advice concerning breeding decisions, you contact your international or national breed association or vet.

Within a combination package, a single result for a DNA test may be missing from the report

It is possible that a low percentage of results may be missing if a combination package is requested this can be caused due to technical reasons. We consider a combination package ‘fully reported’ if only one or two of the markers within a combination package are missing after retesting. No refund will be provided for missing tests within a combination package.

Combination packages are not 100% complete

Our combination packages will never be 100% complete due to the large number of publications in the scientific literature. We update the packages twice a year, whereby we use the following criteria: a) changes to the breeds in which a DNA test has been validated, b) the type of disease and c) technical criteria.

There is never a fool-proof link between test results and disease symptoms

In general, our tests are based on scientific publications. In these articles, a disease or condition is described with detailed information about the symptoms and background of the DNA test. The test does not guarantee that the animal still has the possibility to develop symptoms. The symptoms can be caused due to unknown genetic mutations. However, after testing positive for a disease an animal will not always develop symptoms. We therefore recommend that you contact your local or international breed association, Management Board or vet for breeding or veterinary advice.

Parentage Verification using microsatellites (STRS)

STR yes
STR no

The genetic variation which is present in an animal, originates from both parents. Half of the variation is originating from the father, whereas the other half comes from the mother.

For parentage verification, typically 20 up to 40 genetic characteristics are visualized. In this process the length of genetic fragments is being measured. The measured length of a genetic characteristic in an offspring must correspond to the length in the mother and father that were provided for comparison. In two examples, it is shown how the basic rules are applied in parentage verification.

In the figure an example is provided of a correct parentage. In this figure, the DNA is shown of three individuals: an offspring (upper line), a potential mother (middle line), and a potential father (bottom line). In each line one genetic marker is shown. Two DNA fragments are visible as peaks. The first fragment of the offspring is originating from the father (length of the fragment is 150), whereas the second fragment comes from the mother (fragment length 152). In this case both fragments of the offspring are present in the parents: the parentage is correct.

In the second example a situation is shown where parentage does not qualify. The three lines are shown in the order of offspring, potential mother and potential father. Again in each line one DNA marker is shown, where two DNA fragments are visible as peaks. The second fragment of the offspring is present in the mother (fragment length 152), whereas the first fragment in the offspring (fragment length 150) is NOT present at the assigned father. In this case, one fragment is present at the offspring, which is not present in either of the parents: the parentage does not qualify.

When 20 up to 40 different genetic fragments are checked, the chance that an incorrect parentage is not detected becomes very small. The genetic fragments which are used for parentage verification and identification provide no information on properties such as color and quality of an animal, plant or human, since the fragments are non-coding.

When the length of a number of DNA fragments is measured for a sample, a DNA-profile is established. This pattern is unique for a specific individual person, animal or plant, so that in cases of doubt DNA-profiles can be compared to confirm if two samples originate from the same individual.

Sabino 1

Sabino is a general description for a group of similar white spotting patterns. The sabino pattern is described as irregular spotting usually on the legs, belly and face, often with roaning around the edges of the white markings. A mutation has been discovered that produces one type of sabino pattern, it has been named Sabino1 as it is not present in all sabino-patterned horses. More mutations will probably exist that account for other sabino patterns. The Coat Colour Sabino 1 test (P785) tests for the genetic status of the KIT gene. This gene has two variants (alleles). The allele SB1 is semi-dominant. One copy of the SB1 allele results in horses with broken Sabino markings and possibly only a small amount of white. Two copies of the SB1 allele result in at least 90% white, also referred to as Sabino-white. The allele N is recessive and does not have an effect on the basic colour.

The Coat Colour Sabino 1 test encloses the following results, in this scheme the results of the Coat Colour Sabino 1 test are shown in combination with the possible results for the tests that determine the basic Coat Colour (Coat Colour Chestnut and Coat Colour Agouti test):

Result Sabino 1

Result Chestnut + Agouti

Coat Colour

Description

N/N

e/e + A/A, A/a or a/a

 

Chestnut, Sorrel

 

Not Sabino 1. The basic colour chestnut/sorrel is not modified unless modified by other colour modifying genes. It can only pass on allele N to its offspring.

N/N

E/E or E/e + A/A or A/a

Bay, Brown

Not Sabino 1. The basic colour bay/brown is not modified unless modified by other colour modifying genes. It can only pass on allele N to its offspring.

N/N

E/E or E/e + a/a

Black

Not Sabino 1. The basic colour is not black modified unless modified by other colour modifying genes. It can only pass on allele N to its offspring.

N/SB1

e/e + A/A, A/a or a/a

 

Chestnut/sorrel sabino

Sabino 1 pattern. One copy of the SB1 allele. Horse typically may have 2 or more white legs, blaze, spots or roaning in the midsection and jagged margins around white areas unless modified by other colour modifying genes. It can pass on either allele N or SB1 to its offspring.

N/SB1

E/E or E/e + A/A or A/a

Brown/bay sabino

Sabino 1 pattern. One copy of the SB1 allele. Horse typically may have 2 or more white legs, blaze, spots or roaning in the midsection and jagged margins around white areas unless modified by other colour modifying genes. It can pass on either allele N or SB1 to its offspring.

N/SB1

E/E or E/e + a/a

Black sabino

Sabino 1 pattern. One copy of the SB1 allele. Horse typically may have 2 or more white legs, blaze, spots or roaning in the midsection and jagged margins around white areas unless modified by other colour modifying genes. It can pass on either allele N or SB1 to its offspring.

SB1/SB1

e/e + A/A, A/a or a/a

 

Chestnut/sorrel sabino

Sabino 1 pattern. Two copies of the SB1 allele. Horse is complete or nearly complete white unless modified by other colour modifying genes. It can only pass on allele SB1 to its offspring.

SB1/SB1

E/E or E/e + A/A or A/a

Brown/bay sabino

Sabino 1 pattern. Two copies of the SB1 allele. Horse is complete or nearly complete white unless modified by other colour modifying genes. It can only pass on allele SB1 to its offspring.

SB1/SB1

E/E or E/e + a/a

Black sabino

Sabino 1 pattern. Two copies of the SB1 allele. Horse is complete or nearly complete white unless modified by other colour modifying genes. It can only pass on allele SB1 to its offspring.

Tobiano

The Tobiano coat pattern usually involves white on all four legs below the hocks and knees and rounded white spots on the body with sharp, clean edges. The head is dark, with white markings like those of a solid colored horse. The white on the body will generally cross the top-line of the horse. The skin underlying the white spots is pink and under the colored areas it is black. The eyes are usually brown, but one or both may be blue or partially blue. The tail can be two colors, a characteristic seldom seen in horses that are not tobiano. A horse can also carry mutations for other modifying genes which can further affect its coat colour.

The Coat Colour Tobiano test (P903) tests for a genetic factor that affects the function of the KIT gene. This gene has two variants (alleles). The dominant allele TO results in the Tobiano pattern and the recessive allele N does not have an effect on the basic colour.

The Coat Colour Tobiano test encloses the following results, in this scheme the results of the Coat Colour Tobiano test are shown in combination with the possible results for the tests that determine the basic Coat Colour (Coat Colour Chestnut and Coat Colour Agouti test):

Result Tobiano

Result Chestnut + Agouti

Coat Colour

Description

N/N

e/e + A/A, A/a or a/a

 

Chestnut, Sorrel

 

Not Tobiano. The basic colour chestnut/sorrel is not modified unless modified by other colour modifying genes. It can only pass on allele N to its offspring.

N/N

E/E or E/e + A/A or A/a

Bay, Brown

Not Tobiano. The basic colour bay/brown is not modified unless modified by other colour modifying genes. It can only pass on allele N to its offspring.

N/N

E/E or E/e + a/a

Black

Not Tobiano. The basic colour black is not modified unless modified by other colour modifying genes. It can only pass on allele N to its offspring.

N/TO

e/e + A/A, A/a or a/a

 

Chestnut/sorrel tobiano

One copy of the dominant TO allele. The colour is chestnut/sorrel tobiano unless modified by other colour modifying genes. It can pass on either allele N or TO to its offspring.

N/TO

E/E or E/e + A/A or A/a

Bay/brown tobiano

One copy of the dominant TO allele. The colour is bay/brown tobiano unless modified by other colour modifying genes. It can pass on either allele N or TO to its offspring.

N/TO

E/E or E/e + a/a

Black tobiano

One copy of the dominant TO allele. The colour is black tobiano unless modified by other colour modifying genes. It can pass on either allele N or TO to its offspring.

TO/TO

e/e + A/A, A/a or a/a

 

Chestnut/sorrel tobiano

Two copies of the dominant TO allele. The colour is chestnut/sorrel tobiano unless modified by other colour modifying genes. It can only pass on allele TO to its offspring.

TO/TO

E/E or E/e + A/A or A/a

Bay/brown tobiano

Two copies of the dominant TO allele. The colour is bay/brown tobiano unless modified by other colour modifying genes. It can only pass on allele TO to its offspring.

TO/TO

E/E or E/e + a/a

Black tobiano

Two copies of the dominant TO allele. The colour is black tobiano unless modified by other colour modifying genes. It can only pass on allele TO to its offspring.

Champagne dilution

The Champagne dilution gene lightens the coat colour of the horse by diluting the pigment. The skin of Champagne-diluted horses is pinkish/lavender toned and becomes speckled with age; the speckling is particularly noticeable around the eye, muzzle, under the tail, udder and sheath. The eye colour is blue-green at birth and darkens to amber as the horse ages. Champagne has the following effects on the basic coat colours of horses:

Chestnut/Sorrel -> Gold champagne:   a gold body color and often a flaxen mane and tail. Gold champagne horses are visually similar to palomino horses.

Bay/Brown -> Amber champagne:       a tan body color with brown points (sometimes referred to as amber Buckskin).

Black -> Classic champagne:               a darker tan body with brown points.

A horse can also carry mutations for other modifying genes which can further affect its coat colour. The Coat Colour Champagne dilution test (P853) tests for the genetic status of the SLC36A1 gene. This gene has two variants (alleles). The dominant allele Ch results in the dilution and the recessive allele N does not have an effect on the basic colour.

The Coat Colour Champagne dilution test encloses the following results, in this scheme the results of the Coat Colour Champagne dilution test are shown in combination with the possible results for the tests that determine the basic Coat Colour (Coat Colour Chestnut and Coat Colour Agouti test):

Result Champagne dilution

Result Chestnut + Agouti

Coat Colour

Description

N/N

e/e + A/A, A/a or a/a

 

Chestnut, Sorrel

 

Non-dilute. The basic colour chestnut/sorrel is not modified unless modified by other colour modifying genes. It can only pass on allele N to its offspring.

N/N

E/E or E/e + A/A or A/a

Bay, Brown

Non-dilute. The basic colour bay/brown is not modified unless modified by other colour modifying genes. It can only pass on allele N to its offspring.

N/N

E/E or E/e + a/a

Black

Non-dilute. The basic colour black is not modified unless modified by other colour modifying genes. It can only pass on allele N to its offspring.

N/Ch

e/e + A/A, A/a or a/a

 

Gold Champagne

 

One copy of the dominant Ch allele. The basic colour chestnut/sorrel is diluted to gold champagne unless modified by other colour modifying genes. It can pass on either allele N or Ch to its offspring.

N/Ch

E/E or E/e + A/A or A/a

Amber Champagne

One copy of the dominant Ch allele. The basic colour bay/brown is diluted to amber champagne unless modified by other colour modifying genes. It can pass on either allele N or Ch to its offspring.

N/Ch

E/E or E/e + a/a

Classic Champagne

One copy of the dominant Ch allele. The basic colour black is diluted to classic champagne unless modified by other colour modifying genes. It can pass on either allele N or Ch to its offspring.

Ch/Ch

e/e + A/A, A/a or a/a

 

Gold Champagne

 

Two copies of the dominant Ch allele. The basic colour chestnut/sorrel is diluted to Gold Champagne unless modified by other colour modifying genes. It can only pass on allele Ch to its offspring.

Ch/Ch

E/E or E/e + A/A or A/a

Amber Champagne

Two copies of the dominant Ch allele. The basic colour bay/brown is diluted to amber champagne unless modified by other colour modifying genes. It can only pass on allele Ch to its offspring.

Ch/Ch

E/E or E/e + a/a

Classic Champagne

Two copies of the dominant Ch allele. The basic colour black is diluted to classic champagne unless modified by other colour modifying genes. It can only pass on allele Ch to its offspring.

Silver dilution / MCOA

The Silver dilution gene dilutes the black pigment but has no effect on the red pigment. The effect of the Silver dilution gene can vary greatly. The mane and tail are lightened to flaxen or silver gray, and may darken on some horses as they age. A black horse will be diluted to chocolate with a lightened mane and tail. A Bay horse with Silver dilution will usually have a lightened mane and tail, as well as lightened lower legs (places with black pigment). A horse can also carry mutations for other modifying genes which can further affect its coat colour.

The Coat Colour Silver dilution test (P784) tests for the genetic status of the PMEL17 gene. This gene has two variants (alleles). The dominant allele Z results in the dilution and the recessive allele N does not have an effect on the basic colour.

The same mutation responsible for the coat color Silver is also associated with Multiple Congenital Ocular Anomalies (MCOA) Syndrome, a wide range of ocular defects that occur in the anterior and posterior parts of the eye. The severity of the syndrome is dose related, so horses with 1 copy of allele Z have fewer severe signs than those with 2 copies of allele Z.

The Coat Colour Silver dilution test encloses the following results, in this scheme the results of the Coat Colour Silver dilution test are shown in combination with the possible results for the tests that determine the basic Coat Colour (Coat Colour Chestnut and Coat Colour Agouti test):

Result Silver dilution

Result Chestnut + Agouti

Coat Colour

Description

N/N

e/e + A/A, A/a or a/a

 

Chestnut, Sorrel

 

Non-dilute. The basic colour chestnut/sorrel is not modified unless modified by other colour modifying genes. It can only pass on allele N to its offspring.

N/N

E/E or E/e + A/A or A/a

Bay, Brown

Non-dilute. The basic colour bay/brown is not modified unless modified by other colour modifying genes. It can only pass on allele N to its offspring.

N/N

E/E or E/e + a/a

Black

Non-dilute. The basic colour black is not modified unless modified by other colour modifying genes. It can only pass on allele N to its offspring.

N/Z

e/e + A/A, A/a or a/a

 

Chestnut, Sorrel

 

One copy of the dominant Z allele. The basic colour chestnut/sorrel is not modified unless modified by other colour modifying genes. It can pass on either allele N or Z to its offspring.

N/Z

E/E or E/e + A/A or A/a

Silver dilution on Bay or Brown

One copy of the dominant Z allele. The black pigment of bay/brown horses on lower legs is lightened and mane and tail are lightened to flaxen. The colour can be further modified by other colour modifying genes. It can pass on either allele N or Z to its offspring.

N/Z

E/E or E/e + a/a

Chocolate

One copy of the dominant Z allele. The basic colour black is diluted to chocolate with flaxen mane and tail. The colour can be further modified by other colour modifying genes. It can pass on either allele N or Z to its offspring.

Z/Z

e/e + A/A, A/a or a/a

 

Chestnut, Sorrel

 

Two copies of the dominant Z allele. The basic colour chestnut/sorrel is not modified unless modified by other colour modifying genes. It can only pass on allele Z to its offspring.

Z/Z

E/E or E/e + A/A or A/a

Silver dilution on Bay or Brown

Two copies of the dominant Z allele. The black pigment of bay/brown horses on lower legs is lightened and mane and tail are lightened to flaxen. The colour can be further modified by other colour modifying genes. It can only pass on allele Z to its offspring.

Z/Z

E/E or E/e + a/a

Chocolate

Two copies of the dominant Z allele. The basic colour black is diluted to chocolate with flaxen mane and tail. The colour can be further modified by other colour modifying genes. It can only pass on allele Z to its offspring.

Dominant White 3

White patterning in horses is known as Dominant White or White. Dominant White patterns are variable, ranging from minimal Sabino-like spotting to all-white horses. The eye colour of Dominant White horses is brown. There are about 20 different mutations identified that are associated with white patterns, all mutations are found in the KIT gene. Except for W20, most of the known Dominant White mutations arose recently and are restricted to specific lines within breeds. The Coat Colour Dominant White 3 test (P592) tests for the mutation known as W20 in the KIT gene. This test detects two variants (alleles). The allele W20 is dominant. One or two copies of the W20 allele have a subtle effect on the amount of white expressed. It appears to increase the expression of white in combination with other white pattern genes. The allele N is recessive and does not have an effect on the basic colour.

The Coat Colour Dominant White 3 test encloses the following results, in this scheme the results of the Coat Colour Dominant White 3 test are shown in combination with the possible results for the tests that determine the basic Coat Colour (Coat Colour Chestnut and Coat Colour Agouti test):

Result Dominant White 3

Result Chestnut + Agouti

Coat Colour

Description

N/N

e/e + A/A, A/a or a/a

 

Chestnut, Sorrel

 

Not Dominant White. The basic colour chestnut/sorrel is not modified unless modified by other colour modifying genes. It can only pass on allele N to its offspring.

N/N

E/E or E/e + A/A or A/a

Bay, Brown

Not Dominant White. The basic colour bay/brown is not modified unless modified by other colour modifying genes. It can only pass on allele N to its offspring.

N/N

E/E or E/e + a/a

Black

Not Dominant White. The basic colour black is not modified unless modified by other colour modifying genes. It can only pass on allele N to its offspring.

N/W20

e/e + A/A, A/a or a/a

 

Chestnut/sorrel with Dominant White pattern

Dominant White pattern. One copy of the W20 allele. The horse will display some degree of white spotting but the specific pattern cannot be predicted, unless modified by other colour modifying genes. It can pass on either allele N or W20 to its offspring.

N/W20

E/E or E/e + A/A or A/a

Brown/bay with Dominant White pattern

Dominant White pattern. One copy of the W20 allele. The horse will display some degree of white spotting but the specific pattern cannot be predicted, unless modified by other colour modifying genes. It can pass on either allele N or W20 to its offspring.

N/W20

E/E or E/e + a/a

Black with Dominant White pattern

Dominant White pattern. One copy of the W20 allele. The horse will display some degree of white spotting but the specific pattern cannot be predicted, unless modified by other colour modifying genes. It can pass on either allele N or W20 to its offspring.

W20/W20

e/e + A/A, A/a or a/a

Chestnut/sorrel with Dominant White pattern

Dominant White pattern. Two copies of the W20 allele. The horse will display some degree of white spotting but the specific pattern cannot be predicted, unless modified by other colour modifying genes. It can only pass on allele W20 to its offspring.

W20/W20

E/E or E/e + A/A or A/a

Brown/bay with Dominant White pattern

Dominant White pattern. Two copies of the W20 allele. The horse will display some degree of white spotting but the specific pattern cannot be predicted, unless modified by other colour modifying genes. It can only pass on allele W20 to its offspring.

W20/W20

E/E or E/e + a/a

Black with Dominant White pattern

Dominant White pattern. Two copies of the W20 allele. The horse will display some degree of white spotting but the specific pattern cannot be predicted, unless modified by other colour modifying genes. It can only pass on allele W20 to its offspring.

CombiBreed Health Package for Dogs

Scopri i dettagli genetici del tuo amato cane!

Questo pacchetto completo offre un’approfondita analisi del patrimonio genetico del tuo cane, fornendoti preziose informazioni sulla sua salute e sui caratteri distintivi.

  • Test per oltre 255 condizioni genetiche di salute
  • Informazioni su più di 35 tratti genetici
  • Coefficiente di Inbreeding
  • Eterozigositá (Diversità Genetica)

Tempo di consegna: 15-20 giorni lavorativi

€ 146,95 IVA inclusa

€ 121,44 IVA esclusa

Modifica la quantità nel tuo carrello se desideri ordinare pacchetti multipli.

Cosa è incluso?

Condizioni di salute: Prioritizza il benessere del tuo cane con un’analisi completa della salute. Identifica potenziali rischi genetici di salute e predisposizioni, consentendoti di intraprendere misure preventive per la sua salute a lungo termine, felicità e riproduzione.

Caratteri distintivi: Scopri i tratti affascinanti che rendono unico il tuo cane. Dal colore e dalla lunghezza del pelo a diversi schemi del pelo, il nostro test del DNA esplora in profondità i fattori genetici che influenzano l’aspetto e le caratteristiche del tuo cane.

Coefficiente di Inbreeding (COI): Il COI ti fornisce informazioni cruciali per prendere decisioni informate sulla riproduzione, l’assistenza sanitaria e le potenziali predisposizioni genetiche.

Eterozigosità: Mantenere un certo livello di eterozigosità è importante nei programmi di allevamento per evitare un accumulo eccessivo di tratti recessivi dannosi e promuovere la salute genetica complessiva nella popolazione canina.

Abbiamo un tasso di successo dei test del 95% nella consegna del rapporto finale sulla salute.

Maggiori informazioni? Clicca qui per le nostre FAQ.

Ultimo aggiornamento 24.10.2024

Come funziona?

swab
results

Ordina in pochi clic!

Aggiungi il pacchetto CombiBreed Health Package for Dogs al tuo carrello e fornisci i dettagli tuoi e del tuo cane. Queste informazioni aiutano nella gestione del tuo ordine e faranno parte del tuo rapporto completo sulla salute. Se sei nuovo su CombiBreed? Crea un account per accedere ai risultati dei test nel nostro portale online, sbloccando informazioni sulla salute del tuo cane.

Raccogli il materiale del DNA

Segui la guida passo-passo fornita nel nostro kit per campionare, che include 2 tamponi. È un processo veloce che puoi eseguire a casa. Imballa i tamponi in modo sicuro e inviali al nostro laboratorio. Assicurati che ciascun tampone sia contrassegnato con il nome del tuo cane e il numero di microchip o registrazione per garantire una lavorazione accurata.

Analisi del DNA

I nostri esperti gestiscono i dati genetici del tuo cane con la massima cura, assicurandosi che ogni dettaglio sia esaminato attentamente. Facciamo il massimo per garantire l’affidabilità. I nostri rigorosi controlli di qualità sono progettati per fornirti risultati su cui puoi contare.

Risultati disponibili

Ti avviseremo via email quando i tuoi risultati saranno pronti per essere visualizzati nel portale online di CombiBreed. Una volta che almeno il 50% dei risultati è disponibile, puoi accedere al tuo account per ottenere preziose informazioni online. Quando tutti i test saranno completi, riceverai il rapporto completo sulla salute del tuo cane in formato PDF via email.

 

Domande frequenti (FAQ)

Cosa significa “Nessun risultato”?

Se il risultato di un test è “Nessun risultato”, non possiamo generare un risultato affidabile. Tuttavia, il campione è di qualità sufficiente per generare un risultato affidabile per gli altri test. L’affidabilità del test eseguito è determinata da analisi ripetute. Se i risultati differiscono tra loro, non possiamo riportare un risultato affidabile. Un “nessun risultato” può verificarsi anche perché un determinato test non ottiene un risultato, mentre i test eseguiti in parallelo forniscono un risultato affidabile. Se desideri ancora un risultato per questo test, puoi riacquistarlo nel nostro negozio online e inviare un nuovo campione.

Posso ordinare più pacchetti di test genetici DNA per diversi cani?

Assolutamente! Puoi ordinare più pacchetti CombiBreed Health per Cani per diversi cani e gestirli tutti all’interno del tuo account CombiBreed per un accesso comodo ai rispettivi risultati. Aggiungi il pacchetto al tuo carrello e gestisci la quantità anche lì.

Perché dovrei considerare il test del DNA per il mio cane?

Il test del DNA può rivelare informazioni cruciali sulla salute del tuo cane, tratti specifici della razza e potenziali rischi genetici. Questa conoscenza ti permette di intraprendere misure preventive per garantire il loro benessere generale e la longevità.

Qual è la differenza tra i pacchetti specifici per la razza di CombiBreed e il pacchetto CombiBreed Health Package for Dogs?

I pacchetti specifici per razza CombiBreed sono stati creati per molte razze canine. I test in questi pacchetti sono tutti pertinenti alla razza specifica. Il pacchetto Health contiene molti test importanti per diverse razze comuni. Vuoi solo capire le condizioni di salute genetiche per la tua razza? Allora ti consigliamo di acquistare un pacchetto specifico per la razza.

Perché l’HNPK non è incluso nel pacchetto Health?

Il test HNPK (Nasal Parakeratosis ereditaria) è brevettato in una parte significativa dell’Europa. Di conseguenza, non siamo in grado di eseguire questo test in uno dei nostri laboratori. Invece, ci siamo associati con un laboratorio esterno situato al di fuori dell’area protetta dal brevetto per eseguire questo test. A causa dei relativamente alti costi associati a questo test, abbiamo deciso di escluderlo dalle nostre offerte standard di pacchetti.

Se sei interessato al test HNPK, puoi ordinarlo separatamente utilizzando il codice del test H675. Si noti che l’HNPK rimane disponibile come parte dei nostri pacchetti CombiBreed specifici per la razza.

Come accedo al vostro Portale Online?

Il nostro portale online è accessibile tramite il tuo account nel nostro negozio online CombiBreed. Fai clic su ‘Portale Online’ nel menu del tuo account personale. La prima volta ti chiederemo di effettuare nuovamente il login per verificare l’utente. La prossima volta potrai fare clic direttamente sul link e accedere immediatamente al nostro Portale Online.

Cosa si intende per test del DNA pertinenti alla razza?

Non tutti i test del DNA sono pertinenti per tutte le razze. Le razze per cui il test è adatto sono descritte nella pagina del prodotto di ciascun test. Nel rapporto del pacchetto CombiBreed Health Package for Dogs, distinguiamo anche tra test pertinenti alla razza e altri test in base ai dati che hai inserito durante l’acquisto.

Come posso sapere che avete ricevuto il campione del mio cane?

Riceverai una conferma via email una volta che avremo ricevuto con successo il campione del tuo cane presso il nostro laboratorio. Questa email ti fornirà l’assicurazione che il campione è stato ricevuto e si trova sotto la nostra cura.

Quali precauzioni devo prendere prima di raccogliere il materiale genetico del DNA?

Per garantire campioni di alta qualità, è consigliabile preparare il tuo cane da 1 a 2 ore prima del campionamento. Durante questo periodo, mantieni il tuo cane separato da altri animali e evita che mangi o beva, tranne che per l’acqua.

Come riceverò i risultati del test?

Una volta che riceviamo i tuoi campioni e li analizziamo, ti avviseremo via email quando i risultati saranno pronti. Accedi al tuo account CombiBreed per accedere ai risultati nel portale online. Un rapporto completo sulla salute ti verrà inviato via email quando tutti i test richiesti avranno risultati.

Le mie informazioni e i dati del mio cane sono al sicuro con CombiBreed?

Sì, prendiamo seriamente la privacy dei dati. Le tue informazioni personali e i dati del tuo cane sono trattati con il massimo livello di riservatezza e sicurezza. Si prega di fare riferimento alla nostra politica sulla privacy per ulteriori dettagli.

Posso condividere i risultati del mio cane con il mio veterinario?

Assolutamente! Condividere i risultati genetici del tuo cane con il veterinario può facilitare piani di assistenza sanitaria più mirati. Usa il rapporto in formato PDF con i risultati per questo. Puoi condividerlo con il tuo veterinario via email o stampato.

Posso raccogliere i campioni da solo o ho bisogno di assistenza professionale?

Puoi raccogliere facilmente i campioni da solo seguendo le istruzioni fornite nel kit per tamponi. Il processo è progettato per l’uso domestico.

Raccogliere il materiale genetico del DNA dal mio cane è sicuro e indolore?

Sì, raccogliere il materiale genetico del DNA utilizzando il kit per tamponi è completamente sicuro e indolore per il tuo cane. È un processo non invasivo che richiede solo di tamponare la guancia interna.

Quanto tempo devo aspettare dopo che il mio cane ha mangiato prima di raccogliere il campione?

Si consiglia di aspettare da 1 a 2 ore dopo che il tuo cane ha mangiato prima di raccogliere il campione. Durante questo tempo, mantieni il tuo cane separato da altri animali e permettigli solo di bere acqua.

Posso utilizzare il pacchetto CombiBreed Health per qualsiasi razza di cane?

Il pacchetto CombiBreed Health per Cani è progettato per coprire tutte le razze di cani. Ciò significa che, indipendentemente dalla razza del tuo cane, puoi beneficiare delle approfondite conoscenze genetiche fornite dal pacchetto. Otterrai informazioni preziose sulla salute del tuo cane, sui potenziali rischi genetici e su altri tratti rilevanti, indipendentemente dalla razza specifica del tuo cane. Questa inclusività rende il pacchetto di salute del DNA una risorsa versatile e preziosa per tutti i proprietari di cani.

Come posso rimanere aggiornato sullo stato del mio ordine?

Riceverai notifiche via email nelle fasi chiave del processo, come quando riceviamo i campioni, quando i risultati sono pronti per la visualizzazione e quando il rapporto completo sulla salute è disponibile.

Il pacchetto di salute del DNA è adatto ai cuccioli?

Sì, il pacchetto di salute CombiBreed per Cani può fornire informazioni preziose sulla salute e sui potenziali rischi anche per i cuccioli, aiutandoti a gettare le basi per il loro benessere.

Come posso sapere se ho raccolto abbastanza materiale genetico del DNA per l’analisi?

Anche se potresti non vedere materiale genetico visibile sui tamponi, se hai seguito le istruzioni, è probabile che tu abbia raccolto una quantità adeguata di DNA. Il nostro laboratorio effettua controlli di qualità per garantire materiale genetico sufficiente per l’analisi.

Perché devo inviare due tamponi Copan del mio cane?

Considerando la vasta gamma di test del DNA inclusi nel nostro pacchetto di salute CombiBreed per Cani, richiediamo una maggiore quantità di materiale genetico del DNA rispetto ai nostri altri test e pacchetti. Questo richiede il ritorno di due tamponi contenenti materiale genetico del DNA. Al momento dell’ordine, riceverai un kit per tamponi da noi, che include due tamponi Copan e istruzioni dettagliate per il campionamento.

Non ho ricevuto i risultati per tutti i test del DNA, ma il rapporto è già stato finalizzato. Riceverò comunque i risultati per questi test in sospeso?

Il pacchetto comprende oltre 290 test del DNA, ed è possibile che non siamo in grado di fornire risultati per tutti inizialmente. Nei casi in cui non siano disponibili risultati, avvieremo un nuovo test per assicurarci di poter fornire un risultato. Manteniamo un tasso di successo dei test del 95% nella consegna del rapporto finale sulla salute.

Appaloosa Pattern-1 (PATN1)

The Appaloosa spotting pattern, also known as Leopard Complex spotting (LP) includes a highly variable group of white spotting- or depigmentation patterns in horses. Appaloosa horses have three additional identifiable characteristics: mottled skin around the muzzle, anus and genitalia, striped hooves and white sclera round the eyes. LP is the result of an incompletely dominant mutation in the TRPM1 gene, also known as the LP gene. The LP gene allows for the expression of the various leopard complex spotting patterns while other genes determine the extent (or amount) of white. One of the genes that is associated with increased amount of white in in LP horses has been identified (RFWD3) and has been termed Pattern-1 (PATN1) for first pattern gene. The Coat Colour Appaloosa Pattern-1 (PATN1) test (P305) tests for the status of the PATN1 gene. This gene has two variants (alleles). The dominant allele PATN1 results in an increased amount of white in horses that carry at least one copy of the LP allele on the LP gene. The recessive allele N does not have an effect on the basic colour. Horses that have one copy of the LP allele, in combination with at least one copy of the PATN1 allele most often have a Leopard or a near Leopard pattern. Horses that have two copies of the LP allele in combination with at least one copy of the PATN1 allele most often have a Few-spot or near Few spot pattern. Horses that have at least one copy of the  PATN1 allele but do not have a copy of the LP allele will not have a Appaloosa spotting pattern but can pass on the PATN1 allele to their offspring.

The Coat Colour Appaloosa Pattern-1 (PATN1) test encloses the following results, in this scheme the results of the Coat Colour Appaloosa Pattern-1 (PATN1) test are shown in combination with the possible results for the LP Gene.

Result PATN1

Result LP

Coat Colour

Description

N/N

N/N

No Appaloosa

The basic colour is not modified unless modified by other colour modifying genes. It can only pass on allele N to its offspring.

N/N

N/LP

Blanket appaloosa

It can only pass on allele N to its offspring.

N/N

LP/LP

Snow cap appaloosa

It can only pass on allele N to its offspring. The horse suffers from Congenital Stationary Night Blindness (CSNB).

N/PATN1

N/N

No Appaloosa

The basic colour is not modified unless modified by other colour modifying genes. It can pass on either allele N or PATN1 to its offspring.

N/PATN1

N/LP

Leopard or a near Leopard pattern

It can pass on either allele N or PATN1 to its offspring.

N/PATN1

LP/LP

Few-spot or near Few spot pattern.

It can pass on either allele N or PATN1 to its offspring. The horse suffers from Congenital Stationary Night Blindness (CSNB).

PATN1/PATN1

N/N

No Appaloosa

The basic colour is not modified unless modified by other colour modifying genes. It can only pass on allele PATN1 to its offspring.

PATN1/PATN1

N/LP

Leopard or a near Leopard pattern

It can only pass on allele PATN1 to its offspring.

PATN1/PATN1

LP/LP

Few-spot or near Few spot pattern

It can only pass on allele PATN1 to its offspring. The horse suffers from Congenital Stationary Night Blindness (CSNB).

Go to Top