Search: H673 Degenerative Myelopathy, DM/info-lgs@agrotis.it/info-lgs@agrotis.it

Need a new search?

If you didn't find what you were looking for, try a new search!

Leukoencephalomyelopathy – LEMP (Leonberger)

Leukoencephalomyelopathy (LEMP) is a severe, degenerative neural disorder that occurs in young dogs and causes a progressive loss of muscle coordination. The disorder is caused by a recessive mutation to the gene NAPEPLD. The variant of LEMP analysed in this test occurs in the Leonberger. A related variant is found in the Great Dane and Rottweiler.

Mielopatia degenerativa Esone 2 (DM Esone 2)

La mielopatia degenerativa canina (DM) è una malattia neurodegenerativa progressiva incurabile del midollo spinale. Le malattie neurodegenerative sono caratterizzate da una progressiva perdita di neuroni nel sistema nervoso centrale (SNC) che porta a carenze funzionali. Nel caso della DM, la regione interessata è il midollo spinale, che provoca atassia (perdita di coordinazione). La DM è simile per molti versi alla sclerosi laterale amiotrofica (SLA) nell’uomo.

Questa variante della malattia, a volte designata come SOD1B o come mielopatia degenerativa dell’esone 2, si verifica in molte razze diverse. È causata da una mutazione autosomica recessiva con penetranza incompleta del gene SOD1. Sebbene la mutazione si trovi in molte razze, la malattia viene raramente diagnosticata in razze o cani di razza mista diversi da quelli menzionati per questo test. È stata osservata anche una variante correlata specifica del Bovaro del Bernese. Quando si testa un bovaro bernese per DM, è importante testare entrambe queste varianti, anziché una sola.

Mielopatia degenerativa dell’esone 1 (DM Esone 1) – Bovaro del Bernese

La mielopatia degenerativa canina (DM) è una malattia neurodegenerativa progressiva incurabile del midollo spinale. Le malattie neurodegenerative sono caratterizzate da una progressiva perdita di neuroni nel sistema nervoso centrale (SNC) che porta a carenze funzionali. Nel caso della DM, la regione interessata è il midollo spinale, che provoca atassia (perdita di coordinazione). La DM è simile per molti versi alla sclerosi laterale amiotrofica (SLA) nell’uomo.

Questa variante della malattia, nota come SOD1A o Mielopatia Degenerativa Esone 1, si verifica specificamente nel Bovaro del Bernese. È causata da una mutazione autosomica recessiva con penetranza incompleta del gene SOD1. Una variante correlata è stata osservata in una vasta gamma di razze. Quando si testa un bovaro bernese per DM, è importante testare entrambe queste varianti, anziché una sola.

Mielopatia Degenerativa Esone 2 (DM Esone 2) (Laboratorio Esterno con brevetto)

La mielopatia degenerativa canina (DM) è una malattia neurodegenerativa progressiva incurabile del midollo spinale. Le malattie neurodegenerative sono caratterizzate da una progressiva perdita di neuroni nel sistema nervoso centrale (SNC) che porta a carenze funzionali. Nel caso della DM, la regione interessata è il midollo spinale, che provoca atassia (perdita di coordinazione). La DM è simile per molti versi alla sclerosi laterale amiotrofica (SLA) nell’uomo.

Questa variante della malattia, a volte designata come SOD1B o come mielopatia degenerativa dell’esone 2, si verifica in molte razze diverse. È probabilmente causata da una mutazione autosomica recessiva con penetranza incompleta del gene SOD1. La variante si trova in molte razze, ma la malattia viene raramente diagnosticata in razze o cani di razza mista diversi da quelli menzionati per questo test.

Andatura sincronizzata (DMRT3-correlata)

Tutti i cavalli hanno tre andature naturali (passo, trotto e galoppo). Alcune razze (le razze con andatura) mostrano una o più andature aggiuntive, in particolare a velocità intermedie. Questa capacità di esibire forme alternative di andatura è chiamata andatura sincronizzata e il test del DNA per questo tratto è noto come SynchroGait. Una mutazione è stata trovata nel gene del fattore di trascrizione 3 (DMRT3) correlato al doppio sesso e al mab-3. Questo gene svolge un ruolo cruciale nello sviluppo dei neuroni del midollo spinale che controllano il movimento e la locomozione degli arti. In particolare, il gene è coinvolto nella formazione di interneuroni inibitori nel midollo spinale, che sono fondamentali per coordinare i movimenti muscolari durante le varie andature. La mutazione è vista come un importante fattore genetico ed è osservata in molte razze di cavalli.

Contatti

Agrotis S.r.l.
Via Bergamo 292
26100 Cremona
Italia

+39-0372-560828
info-lgs@agrotis.it

Name
Questo campo serve per la convalida e dovrebbe essere lasciato inalterato.

Roan

Roan is a white patterning coat colour trait of intermixed white and coloured hairs in the body while the head, lower legs, mane and tail remain colored. Roan horses are born with the pattern, though it may not be obvious until the foal coat is shed. The white and coloured hairs are evenly mixed in horses that inherit the classic Roan gene, which can differentiate this from several mimic patterns called roaning. Roaning patterns tend to be uneven in the distribution of white hairs and the inheritance of roaning has not been defined. The mutation causing the Roan coat colour has not yet been identified. The Coat Roan test (P659) tests for DNA markers that are associated with Roan coat colour in several breeds, the DNA markers can be used to determine if a horse has the Roan mutation and how many copies. This test detects three variants (alleles), Rn, Rn* and N. The allele Rn is dominant. One or two copies of the Rn allele result in a Roan coat colour. The allele Rn* is very uncommon and not always associated with the Roan coat colour, this allele has only been observed in Tennessee Walking horses and Rocky Mountain horses. The allele N is recessive and does not have an effect on the basic colour.

The Coat Colour Roan test encloses the following results, in this scheme the results of the Coat Colour Roan test are shown in combination with the possible results for the tests that determine the basic Coat Colour (Coat Colour Chestnut and Coat Colour Agouti test):

Result Roan

Result Chestnut + Agouti

Coat Colour

Description

N/N

e/e + A/A, A/a or a/a

 

Chestnut, Sorrel

 

Not Roan. The basic colour chestnut/sorrel is not modified unless modified by other colour modifying genes. It can only pass on allele N to its offspring.

N/N

E/E or E/e + A/A or A/a

Bay, Brown

Not Roan. The basic colour bay/brown is not modified unless modified by other colour modifying genes. It can only pass on allele N to its offspring.

N/N

E/E or E/e + a/a

Black

Not Roan. The basic colour black is not modified unless modified by other colour modifying genes. It can only pass on allele N to its offspring.

Rn/N

e/e + A/A, A/a or a/a

 

Chestnut/sorrel Roan

One copy of the dominant Rn allele. The colour is chestnut/sorrel roan, unless modified by other colour modifying genes. It can pass on either allele N or Rn to its offspring.

Rn/N

E/E or E/e + A/A or A/a

Brown/bay Roan

One copy of the dominant Rn allele. The colour is brown/bay roan, unless modified by other colour modifying genes. It can pass on either allele N or Rn to its offspring.

Rn/N

E/E or E/e + a/a

Black Roan

One copy of the dominant Rn allele. The colour is black roan, unless modified by other colour modifying genes. It can pass on either allele N or Rn to its offspring.

Rn*/N

e/e + A/A, A/a or a/a

Chestnut/sorrel or Chestnut/sorrel Roan

One copy of the uncommon Rn* allele. The colour can be chestnut/sorrel or chestnut/sorrel roan, unless modified by other colour modifying genes. It can pass on either allele N or Rn* to its offspring.

Rn*/N

E/E or E/e + A/A or A/a

Brown/bay or Brown/bay Roan

One copy of the uncommon Rn* allele. The colour can be brown/bay or brown/bay roan, unless modified by other colour modifying genes. It can pass on either allele N or Rn* to its offspring.

Rn*/N

E/E or E/e + a/a

Black or Black Roan

One copy of the uncommon Rn* allele. The colour can be black or black roan, unless modified by other colour modifying genes. It can pass on either allele N or Rn* to its offspring.

Rn/Rn

e/e + A/A, A/a or a/a

Chestnut/sorrel Roan

Two copies of the dominant Rn allele. The colour is chestnut/sorrel roan, unless modified by other colour modifying genes. It can only pass on allele Rn to its offspring.

Rn/Rn

E/E or E/e + A/A or A/a

Brown/bay Roan

Two copies of the dominant Rn allele. The colour is brown/bay roan, unless modified by other colour modifying genes. It can only pass on allele Rn to its offspring.

Rn/Rn

E/E or E/e + a/a

Black Roan

Two copies of the dominant Rn allele. The colour is black roan, unless modified by other colour modifying genes. It can only pass on allele Rn to its offspring.

Rn/Rn*

e/e + A/A, A/a or a/a

Chestnut/sorrel Roan

One copy of the dominant Rn allele and one copy of the uncommon Rn* allele. The colour is chestnut/sorrel roan, unless modified by other colour modifying genes. It can pass on either allele Rn or Rn* to its offspring.

Rn/Rn*

E/E or E/e + A/A or A/a

Brown/bay Roan

One copy of the dominant Rn allele and one copy of the uncommon Rn* allele. The colour is brown/bay roan, unless modified by other colour modifying genes. It can pass on either allele Rn or Rn* to its offspring.

Rn/Rn*

E/E or E/e + a/a

Black Roan

One copy of the dominant Rn allele and one copy of the uncommon Rn* allele. The colour is black roan, unless modified by other colour modifying genes. It can pass on either allele Rn or Rn* to its offspring.

Rn*/Rn*

e/e + A/A, A/a or a/a

Chestnut/sorrel or Chestnut/sorrel Roan

Two copies of the uncommon Rn* allele. The colour can be chestnut/sorrel or chestnut/sorrel roan, unless modified by other colour modifying genes. It can only pass on allele Rn* to its offspring.

Rn*/Rn*

E/E or E/e + A/A or A/a

Brown/bay or Brown/bay Roan

Two copies of the uncommon Rn* allele. The colour can be brown/bay or brown/bay roan, unless modified by other colour modifying genes. It can only pass on allele Rn* to its offspring.

Rn*/Rn*

E/E or E/e + a/a

Black or Black Roan

Two copies of the uncommon Rn* allele. The colour can be black or black roan, unless modified by other colour modifying genes. It can only pass on allele Rn* to its offspring.

Dun dilution

The Dun dilution gene lightens the coat colour of the horse by lightening the body colour, leaving the head, lower legs, mane and tail undiluted. Dun is also typically characterized by “primitive markings”, allmost all dun horses possess at least the dorsal stripe, but the presence of the other primitive markings varies. Other common markings may include horizontal striping on the legs, transverse striping across the shoulders, and lighter guard hairs along the edges of a dark mane and tail. Dun diluted coat colour with primitive markings is considered the “wild-type” colour and is found in wild equids such as przewalski horses. Dun dilutes both red and black pigment, and the resulting colors range from apricot, golden, dark gray, olive and many more subtle variations. A horse can also carry mutations for other modifying genes which can further affect its coat colour. The Coat Colour Dun dilution test (P660) tests for the genetic status of the TBX3 gene. This gene has three variants (alleles); allele D is dominant over the alleles nd1 and nd2; allele nd1 is dominant over nd2. The dominant allele D results in Dun dilution with primitive markings. Allele nd1 does not dilute the coat colour of the horse, primitive markings are present but the expression is variable. Allele nd2 does not have an effect on the basic colour.

The Coat Colour Dun dilution test encloses the following results, in this scheme the results of the Coat Colour Dun dilution test are shown in combination with the possible results for the tests that determine the basic Coat Colour (Coat Colour Chestnut and Coat Colour Agouti test):

Result Dun dilution

Result Chestnut + Agouti

Coat Colour

Description

nd2/nd2

e/e + A/A, A/a or a/a

 

Chestnut, Sorrel. No primitive markings

Two copies of the nd2 allele. Coat colour is not diluted and primitive markings are absent. The basic colour chestnut/sorrel is not modified unless modified by other colour modifying genes. It can only pass on allele nd2 to its offspring.

nd2/nd2

E/E or E/e + A/A or A/a

Bay, Brown. No primitive markings

Two copies of the nd2 allele. Coat colour is not diluted and primitive markings are absent. The basic colour bay/brown is not modified unless modified by other colour modifying genes. It can only pass on allele nd2 to its offspring.

nd2/nd2

E/E or E/e + a/a

Black. No primitive markings

Two copies of the nd2 allele. Coat colour is not diluted and primitive markings are absent. The basic colour black is not modified unless modified by other colour modifying genes. It can only pass on allele nd2 to its offspring.

nd1/nd2

e/e + A/A, A/a or a/a

 

 

Chestnut, Sorrel. Primitive markings may be present

One copy of the nd1 allele and one copy of the nd2 allele. The nd1 allele is dominant over the nd2 allele. Coat colour is not diluted. Primitive markings may be present. The colour can be further modified by other colour modifying genes. It can pass on either allele nd1 or nd2 to its offspring.

nd1/nd2

E/E or E/e + A/A or A/a

Bay, Brown. Primitive markings may be present

One copy of the nd1 allele and one copy of the nd2 allele. The nd1 allele is dominant over the nd2 allele. Coat colour is not diluted. Primitive markings may be present. The colour can be further modified by other colour modifying genes. It can pass on either allele nd1 or nd2 to its offspring.

nd1/nd2

E/E or E/e + a/a

Black. Primitive markings may be present

One copy of the nd1 allele and one copy of the nd2 allele. The nd1 allele is dominant over the nd2 allele. Coat colour is not diluted. Primitive markings may be present. The colour can be further modified by other colour modifying genes. It can pass on either allele nd1 or nd2 to its offspring.

nd1/nd1

e/e + A/A, A/a or a/a

 

Chestnut, Sorrel. Primitive markings may be present

Two copies of the nd1 allele. Coat colour is not diluted. Primitive markings may be present. The colour can be further modified by other colour modifying genes. It can only pass on allele nd1 to its offspring.

nd1/nd1

E/E or E/e + A/A or A/a

Bay, Brown. Primitive markings may be present

 

Two copies of the nd1 allele. Coat colour is not diluted. Primitive markings may be present. The colour can be further modified by other colour modifying genes. It can only pass on allele nd1 to its offspring.

nd1/nd1

E/E or E/e + a/a

Black. Primitive markings may be present

 

Two copies of the nd1 allele. Coat colour is not diluted. Primitive markings may be present. The colour can be further modified by other colour modifying genes. It can only pass on allele nd1 to its offspring.

D/nd2

e/e + A/A, A/a or a/a

 

Red dun. With primitive markings

One copy of the dominant D allele and one copy of the nd2 allele. Coat colour is dun-diluted with primitive markings. The colour can be further modified by other colour modifying genes. It can pass on either allele D or nd2 to its offspring.

D/nd2

E/E or E/e + A/A or A/a

Bay dun. With primitive markings

One copy of the dominant D allele and one copy of the nd2 allele. Coat colour is dun-diluted with primitive markings. The colour can be further modified by other colour modifying genes. It can pass on either allele D or nd2 to its offspring.

D/nd2

E/E or E/e + a/a

Blue dun. With primitive markings

One copy of the dominant D allele and one copy of the nd2 allele. Coat colour is dun-diluted with primitive markings. The colour can be further modified by other colour modifying genes. It can pass on either allele D or nd2 to its offspring.

D/nd1

e/e + A/A, A/a or a/a

 

Red dun. With primitive markings

One copy of the dominant D allele and one copy of the nd1 allele. Coat colour is dun-diluted with primitive markings. The colour can be further modified by other colour modifying genes. It can pass on either allele D or nd1 to its offspring.

D/nd1

E/E or E/e + A/A or A/a

Bay dun. With primitive markings

One copy of the dominant D allele and one copy of the nd1 allele. Coat colour is dun-diluted with primitive markings. The colour can be further modified by other colour modifying genes. It can pass on either allele D or nd1 to its offspring.

D/nd1

E/E or E/e + a/a

Blue dun. With primitive markings

One copy of the dominant D allele and one copy of the nd1 allele. Coat colour is dun-diluted with primitive markings. The colour can be further modified by other colour modifying genes. It can pass on either allele D or nd1 to its offspring.

D/D

e/e + A/A, A/a or a/a

Red dun. With primitive markings

Two copies of the dominant D allele. Coat colour is dun-diluted with primitive markings. The colour can be further modified by other colour modifying genes. It can only pass on allele D to its offspring.

D/D

E/E or E/e + A/A or A/a

Bay, Classic, Zebra dun. With primitive markings

Two copies of the dominant D allele. Coat colour is dun-diluted with primitive markings. The colour can be further modified by other colour modifying genes. It can only pass on allele D to its offspring.

D/D

E/E or E/e + a/a

Blue, Mouse dun. With primitive markings

Two copies of the dominant D allele. Coat colour is dun-diluted with primitive markings. The colour can be further modified by other colour modifying genes. It can only pass on allele D to its offspring.

Informativa sulla Privacy

Privacy

VHLGenetics prende molto seriamente la protezione della tua privacy, pertanto trattiamo i tuoi dati personali nel modo più confidenziale ed accurato possibile. La nostra politica sulla privacy copre tutti i dati personali che raccogliamo e utilizziamo, compresi i dati del cliente forniti dall’utente, ma anche, ad esempio, i dati su chi visita il nostro sito Web e si iscrive alle nostre newsletter.

VHLGenetics non utilizzerà i tuoi dati a meno che tu non acconsenta (o abbia in precedenza acconsentito) a farlo o se é necessario per fornirti prodotti o servizi. VHLGenetics non vende i tuoi dati personali a terzi. VHLGenetics fornisce questi dati solo a terze parti coinvolte nell’esecuzione dell’accordo tra VHLGenetics e te stesso, come i responsabili del trattamento dei dati presso i nostri negozi online e le comunicazioni tra laboratori nei Paesi Bassi, Belgio e Germania, se necessario per condurre il test.

To serve organisations better, we offer our DNA services under the brands CombiBreed®, CombiGen®, VHLGenetics® and SNPExpert, whose websites you can visit at www.combibreed.comwww.combigen.comwww snpexpert.com and www.vhlgenetics.com respectively. We also use our brands’ local domain names sometimes, such as combibreed.fr in France and combibreed.it in Italy. VHLGenetics non può elaborare questi dati in nessun altro modo senza il tuo espresso consenso.

I dettagli di contatto di VHLGenetics sono i seguenti:

  • Dr. Van Haeringen Laboratorium BV, Agro Business Park 100, NL-6708 PW Wageningen, the Netherlands
  • Dr. Van Haeringen Polygen bvba, Kasteellaan 7, BE-2390 Malle, Belgium
  • Certagen GmbH, Marie-Curie-Strasse 1, D-53359 Rheinbach, Germania
  • Agrotis S.r.l., Via Bergamo 292, 26100 Cremona, Italia
  • BioBank AS, Holsetgata 22, 2317 Hamar, Norvegia
  • CMSCH, Benešovská 123, 25209 Hradištko, Repubblica Ceca
  • Feragen, Strubergasse 26, 5020 Salzburg, Austria
  • INNO, Rua Cândido de Sousa 15, 47110-503 Braga, Portogallo
  • Laboratorios Labocor S.L., C/ ALAMILLO 41, 8770 – COLMENAR VIEJO MADRID, Spagna
  • PharmaDNA, Demokratu 53, 48485 Kaunas, Lituania
  • Progènes-AND, Gaspern Vian , 29640 Plougonven, Francia
  • Weatherbys Scientific, Irish Equine Centre Johnstown , Co. Kildare , Ireland & UK
  • Zoolyx, Zonnestraat 3, 9300 Aalst, Belgio

In caso di domande, puoi anche contattare il nostro servizio clienti all’indirizzo info@VHLGenetics.com. Per saperne di più sui marchi sottostanti, visitare www.dnaisourcore.com.

Policy

  1. Se effettui un ordine con noi, VHLGenetics raccoglie i dati che fornisci, come il tuo nome, indirizzo e-mail, indirizzo di casa e dettagli di pagamento, inclusi i dati del tuo conto bancario o della carta di credito, ma li utilizza solo per inviarti la fattura relativa all’utilizzo e fornitura dei nostri servizi e per tenerti aggiornato.
  1. Se una terza parte, come un’azienda o uno studio veterinario, effettua ordini e/o paga fatture in virtù di un accordo tra l’utente e la terza parte, VHLGenetics invierà i risultati dell’ordine alla terza parte.
  1. Se si utilizzano i nostri siti Web, i dati vengono raccolti automaticamente dalle piattaforme tecnologiche che lo rendono possibile. Ad esempio, il tuo browser web o il tuo dispositivo mobile possono condividere determinati dati con VHLGenetics se questi dispositivi comunicano con il nostro sito Web.
  1. Utilizziamo i tuoi dati per informarti elettronicamente (ad esempio via email) di offerte speciali, campagne di VHLGenetics e di nuovi prodotti dei nostri partner fino a quando non viene cancellata la tua registrazione ai nostri siti.
  1. Se ti registri alla nostra newsletter o richiedi informazioni, registreremo il tuo nome, indirizzo e indirizzo e-mail e ti invieremo i dettagli delle nostre offerte e/o promozioni via e-mail e/o potremmo contattarti per offerte e promozioni.
  1. VHLGenetics non vende i tuoi dati. VHLGenetics non venderà o fornirà i tuoi dati personali a terzi e fornirà questi dati solo a terzi coinvolti nella fornitura dei servizi concordati con te. Il nostro personale e le terze parti che assumiamo devono rispettare la riservatezza dei dati dell’utente.
  1. Partner. VHLGenetics utilizza partner per gestire e archiviare i nostri dati. Questi partner possono trovarsi sia all’interno che all’esterno dell’UE. VHLGenetics sceglie partner in grado di proteggere adeguatamente i dati personali, sia seguendo il Privacy Shield UE-USA, le Regole aziendali vincolanti o firmando accordi relativi al GDPR. Se necessario, VHLGenetics stipula accordi di GDPR con tutti i nostri partner.
  1. Conservazione dei dati. VHL conserva i documenti cartacei che i clienti inviano per cinque anni. Restituiremo i documenti cartacei ai clienti se lo richiederanno, ma potremmo farne delle copie. Distruggeremo materiali e oggetti inviati dal cliente una volta terminato i contratti, a meno che non riteniamo che debbano essere conservati più a lungo. Rimuoveremo i tuoi dati personali se ce lo chiedi, ma tieni presente che copie di questi dati potrebbero essere conservate nei backup.
  1. Sicurezza. Anche la protezione dei dati è importante. Se inserisci i tuoi dati bancari per rinnovare automaticamente l’abbonamento, ci assicuriamo che questi dettagli siano crittografati con SSL (Secure Socket Layer). Ricorda che nessuna sicurezza è sicura al 100% e che neppure VHLGenetics può garantirla al 100%. Per rendere sicuro l’utilizzo dei tuoi dati, abbiamo adottato misure organizzative e tecniche all’interno della nostra organizzazione.
  1. Pagamenti tramite il negozio online. Se inserisci i dettagli della tua carta di credito o altri dettagli bancari nel nostro negozio online, tieni presente che un elaboratore di pagamenti esterno elaborerà i tuoi pagamenti.
  1. Modifiche alla politica sulla privacy. La presente Informativa sulla privacy può essere aggiornata in risposta a modifiche della legislazione applicabile o a cambiamenti all’interno della nostra attività o nei servizi che forniamo. Vi informeremo di eventuali modifiche attraverso questa pagina; pertanto ti consigliamo di leggere regolarmente questa Informativa sulla privacy per tenerti aggiornato. Qualora dovessimo apportare modifiche che ti coinvolgono seriamente, ti informeremo via e-mail o tramite i nostri servizi.
  1. I tuoi diritti sui tuoi dati personali. Hai il diritto di revocare il tuo consenso al nostro utilizzo dei tuoi dati personali; e puoi anche esaminare i tuoi dati per correggerli o rimuoverli se i dati che abbiamo archiviato sono errati o illegali.

Se c’è qualcosa che vorresti sapere sull’Informativa sulla privacy di VHLGenetics, puoi contattarci tramite il nostro sito Web o tramite i nostri dettagli di contatto sopra. Nel caso in cui non abbiamo risolto correttamente i reclami su come utilizziamo i tuoi dati, puoi presentare un reclamo all’Autorità olandese per la protezione dei dati.

Distrofia Muscolare (MD) – Corgi

Muscular Dystrophy (MD) is an X-linked muscular disorder, equivalent to Duchenne Muscular Dystrophy (DMD) in humans. The disorder is severe and ultimately fatal, and causes progressive degradation of the dog’s muscles. It is caused by an X-linked recessive mutation to the DMD gene.

The variant of the disorder analysed in this test is found in the Pembroke Welsh Corgi. It is also sometimes known as Corgi Muscular Dystrophy (CMD).

Distrofinopatia da Labradoodle australiano

Muscular Dystrophy (MD) is an X-linked muscular disorder, equivalent to Duchenne Muscular Dystrophy (DMD) in humans. The disorder is severe and ultimately fatal, and causes progressive degradation of the dog’s muscles. It is caused by an X-linked recessive mutation to the DMD gene.

The variant of the disorder analysed in this test is found in the Australian Labradoodle. It is also occasionally known as Australian Labradoodle Dystrophinopathy.

Distrofia Muscolare (MD) – Cavalier King Charles Spaniel

Muscular Dystrophy (MD) is an X-linked muscular disorder, equivalent to Duchenne Muscular Dystrophy (DMD) in humans. The disorder is severe and ultimately fatal, and causes progressive degradation of the dog’s muscles. It is caused by an X-linked recessive mutation to the DMD gene.

The variant analysed in this test is found in the Cavalier King Charles Spaniel, and is sometimes known as Cavalier King Charles Spaniel Muscular Dystrophy (CKCS-MD).

Distrofia Muscolare (MD) – Border Collie

Muscular Dystrophy (MD) is an X-linked muscular disorder, equivalent to Duchenne Muscular Dystrophy (DMD) in humans. The disorder is severe and ultimately fatal, and causes progressive degradation of the dog’s muscles. It is caused by an X-linked recessive mutation to the DMD gene.

This specific variant of the disorder is found in the Border Collie.

Distrofia Muscolare (MD) – Golden Retriever

Muscular Dystrophy (MD) is an X-linked muscular disorder, equivalent to Duchenne Muscular Dystrophy (DMD) in humans. The disorder is severe and ultimately fatal, and causes progressive degradation of the dog’s muscles. It is caused by an X-linked recessive mutation to the DMD gene.

The variant analysed in this test occurs in the Golden Retriever, and is also sometimes known as Golden Retriever Muscular Dystrophy (GRMD).

Distrofia Muscolare Congenita (CMD) – Piccolo levriero italiano (Italian Greyhound)

La distrofia muscolare congenita (CMD o MD) è un disturbo muscolare che causa atrofia e scarsa crescita. Questa particolare variante della malattia è causata da una mutazione recessiva del gene LAMA2. La variante analizzata in questi test si verifica nel levriero italiano. Una variante correlata si verifica anche nello Staffordshire Bull Terrier.

Sabino 1

Sabino is a general description for a group of similar white spotting patterns. The sabino pattern is described as irregular spotting usually on the legs, belly and face, often with roaning around the edges of the white markings. A mutation has been discovered that produces one type of sabino pattern, it has been named Sabino1 as it is not present in all sabino-patterned horses. More mutations will probably exist that account for other sabino patterns. The Coat Colour Sabino 1 test (P785) tests for the genetic status of the KIT gene. This gene has two variants (alleles). The allele SB1 is semi-dominant. One copy of the SB1 allele results in horses with broken Sabino markings and possibly only a small amount of white. Two copies of the SB1 allele result in at least 90% white, also referred to as Sabino-white. The allele N is recessive and does not have an effect on the basic colour.

The Coat Colour Sabino 1 test encloses the following results, in this scheme the results of the Coat Colour Sabino 1 test are shown in combination with the possible results for the tests that determine the basic Coat Colour (Coat Colour Chestnut and Coat Colour Agouti test):

Result Sabino 1

Result Chestnut + Agouti

Coat Colour

Description

N/N

e/e + A/A, A/a or a/a

 

Chestnut, Sorrel

 

Not Sabino 1. The basic colour chestnut/sorrel is not modified unless modified by other colour modifying genes. It can only pass on allele N to its offspring.

N/N

E/E or E/e + A/A or A/a

Bay, Brown

Not Sabino 1. The basic colour bay/brown is not modified unless modified by other colour modifying genes. It can only pass on allele N to its offspring.

N/N

E/E or E/e + a/a

Black

Not Sabino 1. The basic colour is not black modified unless modified by other colour modifying genes. It can only pass on allele N to its offspring.

N/SB1

e/e + A/A, A/a or a/a

 

Chestnut/sorrel sabino

Sabino 1 pattern. One copy of the SB1 allele. Horse typically may have 2 or more white legs, blaze, spots or roaning in the midsection and jagged margins around white areas unless modified by other colour modifying genes. It can pass on either allele N or SB1 to its offspring.

N/SB1

E/E or E/e + A/A or A/a

Brown/bay sabino

Sabino 1 pattern. One copy of the SB1 allele. Horse typically may have 2 or more white legs, blaze, spots or roaning in the midsection and jagged margins around white areas unless modified by other colour modifying genes. It can pass on either allele N or SB1 to its offspring.

N/SB1

E/E or E/e + a/a

Black sabino

Sabino 1 pattern. One copy of the SB1 allele. Horse typically may have 2 or more white legs, blaze, spots or roaning in the midsection and jagged margins around white areas unless modified by other colour modifying genes. It can pass on either allele N or SB1 to its offspring.

SB1/SB1

e/e + A/A, A/a or a/a

 

Chestnut/sorrel sabino

Sabino 1 pattern. Two copies of the SB1 allele. Horse is complete or nearly complete white unless modified by other colour modifying genes. It can only pass on allele SB1 to its offspring.

SB1/SB1

E/E or E/e + A/A or A/a

Brown/bay sabino

Sabino 1 pattern. Two copies of the SB1 allele. Horse is complete or nearly complete white unless modified by other colour modifying genes. It can only pass on allele SB1 to its offspring.

SB1/SB1

E/E or E/e + a/a

Black sabino

Sabino 1 pattern. Two copies of the SB1 allele. Horse is complete or nearly complete white unless modified by other colour modifying genes. It can only pass on allele SB1 to its offspring.

Tobiano

The Tobiano coat pattern usually involves white on all four legs below the hocks and knees and rounded white spots on the body with sharp, clean edges. The head is dark, with white markings like those of a solid colored horse. The white on the body will generally cross the top-line of the horse. The skin underlying the white spots is pink and under the colored areas it is black. The eyes are usually brown, but one or both may be blue or partially blue. The tail can be two colors, a characteristic seldom seen in horses that are not tobiano. A horse can also carry mutations for other modifying genes which can further affect its coat colour.

The Coat Colour Tobiano test (P903) tests for a genetic factor that affects the function of the KIT gene. This gene has two variants (alleles). The dominant allele TO results in the Tobiano pattern and the recessive allele N does not have an effect on the basic colour.

The Coat Colour Tobiano test encloses the following results, in this scheme the results of the Coat Colour Tobiano test are shown in combination with the possible results for the tests that determine the basic Coat Colour (Coat Colour Chestnut and Coat Colour Agouti test):

Result Tobiano

Result Chestnut + Agouti

Coat Colour

Description

N/N

e/e + A/A, A/a or a/a

 

Chestnut, Sorrel

 

Not Tobiano. The basic colour chestnut/sorrel is not modified unless modified by other colour modifying genes. It can only pass on allele N to its offspring.

N/N

E/E or E/e + A/A or A/a

Bay, Brown

Not Tobiano. The basic colour bay/brown is not modified unless modified by other colour modifying genes. It can only pass on allele N to its offspring.

N/N

E/E or E/e + a/a

Black

Not Tobiano. The basic colour black is not modified unless modified by other colour modifying genes. It can only pass on allele N to its offspring.

N/TO

e/e + A/A, A/a or a/a

 

Chestnut/sorrel tobiano

One copy of the dominant TO allele. The colour is chestnut/sorrel tobiano unless modified by other colour modifying genes. It can pass on either allele N or TO to its offspring.

N/TO

E/E or E/e + A/A or A/a

Bay/brown tobiano

One copy of the dominant TO allele. The colour is bay/brown tobiano unless modified by other colour modifying genes. It can pass on either allele N or TO to its offspring.

N/TO

E/E or E/e + a/a

Black tobiano

One copy of the dominant TO allele. The colour is black tobiano unless modified by other colour modifying genes. It can pass on either allele N or TO to its offspring.

TO/TO

e/e + A/A, A/a or a/a

 

Chestnut/sorrel tobiano

Two copies of the dominant TO allele. The colour is chestnut/sorrel tobiano unless modified by other colour modifying genes. It can only pass on allele TO to its offspring.

TO/TO

E/E or E/e + A/A or A/a

Bay/brown tobiano

Two copies of the dominant TO allele. The colour is bay/brown tobiano unless modified by other colour modifying genes. It can only pass on allele TO to its offspring.

TO/TO

E/E or E/e + a/a

Black tobiano

Two copies of the dominant TO allele. The colour is black tobiano unless modified by other colour modifying genes. It can only pass on allele TO to its offspring.

Dominant White 3

White patterning in horses is known as Dominant White or White. Dominant White patterns are variable, ranging from minimal Sabino-like spotting to all-white horses. The eye colour of Dominant White horses is brown. There are about 20 different mutations identified that are associated with white patterns, all mutations are found in the KIT gene. Except for W20, most of the known Dominant White mutations arose recently and are restricted to specific lines within breeds. The Coat Colour Dominant White 3 test (P592) tests for the mutation known as W20 in the KIT gene. This test detects two variants (alleles). The allele W20 is dominant. One or two copies of the W20 allele have a subtle effect on the amount of white expressed. It appears to increase the expression of white in combination with other white pattern genes. The allele N is recessive and does not have an effect on the basic colour.

The Coat Colour Dominant White 3 test encloses the following results, in this scheme the results of the Coat Colour Dominant White 3 test are shown in combination with the possible results for the tests that determine the basic Coat Colour (Coat Colour Chestnut and Coat Colour Agouti test):

Result Dominant White 3

Result Chestnut + Agouti

Coat Colour

Description

N/N

e/e + A/A, A/a or a/a

 

Chestnut, Sorrel

 

Not Dominant White. The basic colour chestnut/sorrel is not modified unless modified by other colour modifying genes. It can only pass on allele N to its offspring.

N/N

E/E or E/e + A/A or A/a

Bay, Brown

Not Dominant White. The basic colour bay/brown is not modified unless modified by other colour modifying genes. It can only pass on allele N to its offspring.

N/N

E/E or E/e + a/a

Black

Not Dominant White. The basic colour black is not modified unless modified by other colour modifying genes. It can only pass on allele N to its offspring.

N/W20

e/e + A/A, A/a or a/a

 

Chestnut/sorrel with Dominant White pattern

Dominant White pattern. One copy of the W20 allele. The horse will display some degree of white spotting but the specific pattern cannot be predicted, unless modified by other colour modifying genes. It can pass on either allele N or W20 to its offspring.

N/W20

E/E or E/e + A/A or A/a

Brown/bay with Dominant White pattern

Dominant White pattern. One copy of the W20 allele. The horse will display some degree of white spotting but the specific pattern cannot be predicted, unless modified by other colour modifying genes. It can pass on either allele N or W20 to its offspring.

N/W20

E/E or E/e + a/a

Black with Dominant White pattern

Dominant White pattern. One copy of the W20 allele. The horse will display some degree of white spotting but the specific pattern cannot be predicted, unless modified by other colour modifying genes. It can pass on either allele N or W20 to its offspring.

W20/W20

e/e + A/A, A/a or a/a

Chestnut/sorrel with Dominant White pattern

Dominant White pattern. Two copies of the W20 allele. The horse will display some degree of white spotting but the specific pattern cannot be predicted, unless modified by other colour modifying genes. It can only pass on allele W20 to its offspring.

W20/W20

E/E or E/e + A/A or A/a

Brown/bay with Dominant White pattern

Dominant White pattern. Two copies of the W20 allele. The horse will display some degree of white spotting but the specific pattern cannot be predicted, unless modified by other colour modifying genes. It can only pass on allele W20 to its offspring.

W20/W20

E/E or E/e + a/a

Black with Dominant White pattern

Dominant White pattern. Two copies of the W20 allele. The horse will display some degree of white spotting but the specific pattern cannot be predicted, unless modified by other colour modifying genes. It can only pass on allele W20 to its offspring.

Cream dilution

The cream dilution gene has an effect on both red and black pigment and dilutes the basic coat colour to lighter coat shades. In several breeds this is considered a desirable trait. The Cream dilution gene is responsible for the palomino, buckskin, smoky black, cremello, perlino and smoky cream coat colours. A horse can also carry mutations for other modifying genes which can further affect its coat colour. The Coat Colour Cream dilution test (P713) tests for the genetic status of the MATP gene. The MATP gene has two variants (alleles). The allele Cr is semi-dominant. One copy of the Cr allele dilutes the coat colour with a single dose, resulting in palomino, buckskin or smoky black. Two copies of the Cr allele dilute the coat colour with a double dose into cremello, perlino or smoky cream. The effect on black pigment might be very subtle. Horses with two copies of the Cr allele are also called “double-dilutes” or “blue-eyed cream” and they share a number of characteristics. The eyes are pale blue, paler than the unpigmented blue eyes associated with white color or white markings, and the skin is rosy-pink. The allele N is recessive and does not have an effect on the basic colour.

The Coat Colour Cream dilution test encloses the following results, in this scheme the results of the Coat Colour Cream dilution test are shown in combination with the possible results for the tests that determine the basic Coat Colour (Coat Colour Chestnut and Coat Colour Agouti test):

Result Cream dilution

Result Chestnut + Agouti

Coat Colour

Description

N/N

e/e + A/A, A/a or a/a

 

Chestnut, Sorrel

Non-dilute. The basic colour is chestnut or sorrel unless modified by other colour modifying genes. It can only pass on allele N to its offspring.

N/N

E/E or E/e + A/A or A/a

Bay, Brown

Non-dilute. The basic colour is bay or brown unless modified by other colour modifying genes. It can only pass on allele N to its offspring.

N/N

E/E or E/e + a/a

Black

Non-dilute. The basic colour is black unless modified by other colour modifying genes. It can only pass on allele N to its offspring.

N/Cr

e/e + A/A, A/a or a/a

 

Palomino

 

Heterozygous dilute, one copy of the Cr allele. The basic coat colour chestnut/sorrel is diluted to palomino. These colours can be further modified by other colour modifying genes. It can pass on either allele N or Cr to its offspring.

N/Cr

E/E or E/e + A/A or A/a

Buckskin

Heterozygous dilute, one copy of the Cr allele. The basic coat colour bay/brown is diluted to buckskin. These colours can be further modified by other colour modifying genes. It can pass on either allele N or Cr to its offspring.

N/Cr

E/E or E/e + a/a

Smoky Black

Heterozygous dilute, one copy of the Cr allele. The basic coat colour black is diluted to Smoky Black. These colours can be further modified by other colour modifying genes. It can pass on either allele N or Cr to its offspring.

Cr/Cr

e/e + A/A, A/a or a/a

 

Cremello

 

Double dilute, two copies of the Cr allele. The basic coat colour chestnut/sorrel is diluted to Cremello. These colours can be further modified by other colour modifying genes. It can only pass on allele Cr to its offspring.

Cr/Cr

E/E or E/e + A/A or A/a

Perlino

Double dilute, two copies of the Cr allele. The basic coat colour bay/brown is diluted to Perlino. These colours can be further modified by other colour modifying genes. It can only pass on allele Cr to its offspring.

Cr/Cr

E/E or E/e + a/a

Smoky Cream

Double dilute, two copies of the Cr allele. The basic coat colour black is diluted to Smoky Cream. These colours can be further modified by other colour modifying genes. It can only pass on allele Cr to its offspring.

Dominant White 1

White patterning in horses is known as Dominant White or White. Dominant White patterns are variable, ranging from minimal Sabino-like spotting to all-white horses. The eye colour of Dominant White horses is brown. There are about 20 different mutations identified that are associated with white patterns, all mutations are found in the KIT gene. Except for W20, most of the known Dominant White mutations arose recently and are restricted to specific lines within breeds. The Coat Colour Dominant White 1 test (P591) tests for the mutation known as W18 in the KIT gene. This test detects two variants (alleles). The allele W18 is dominant. One or two copies of the W18 allele result in horses that display some degree of white spotting but the specific pattern cannot be predicted. The allele N is recessive and does not have an effect on the basic colour.

The Coat Colour Dominant White 1 test encloses the following results, in this scheme the results of the Coat Colour Dominant White 1 test are shown in combination with the possible results for the tests that determine the basic Coat Colour (Coat Colour Chestnut and Coat Colour Agouti test):

Result Dominant White 1

Result Chestnut + Agouti

Coat Colour

Description

N/N

e/e + A/A, A/a or a/a

 

Chestnut, Sorrel

 

Not Dominant White. The basic colour chestnut/sorrel is not modified unless modified by other colour modifying genes. It can only pass on allele N to its offspring.

N/N

E/E or E/e + A/A or A/a

Bay, Brown

Not Dominant White. The basic colour bay/brown is not modified unless modified by other colour modifying genes. It can only pass on allele N to its offspring.

N/N

E/E or E/e + a/a

Black

Not Dominant White. The basic colour black is not modified unless modified by other colour modifying genes. It can only pass on allele N to its offspring.

N/W18

e/e + A/A, A/a or a/a

 

Chestnut/sorrel with Dominant White pattern

Dominant White pattern. One copy of the W18 allele. The horse will display some degree of white spotting but the specific pattern cannot be predicted, unless modified by other colour modifying genes. It can pass on either allele N or W18 to its offspring.

N/W18

E/E or E/e + A/A or A/a

Brown/bay with Dominant White pattern

Dominant White pattern. One copy of the W18 allele. The horse will display some degree of white spotting but the specific pattern cannot be predicted, unless modified by other colour modifying genes. It can pass on either allele N or W18 to its offspring.

N/W18

E/E or E/e + a/a

Black with Dominant White pattern

Dominant White pattern. One copy of the W18 allele. The horse will display some degree of white spotting but the specific pattern cannot be predicted, unless modified by other colour modifying genes. It can pass on either allele N or W18 to its offspring.

W18/W18

e/e + A/A, A/a or a/a

Chestnut/sorrel with Dominant White pattern

Dominant White pattern. Two copies of the W18 allele. The horse will display some degree of white spotting but the specific pattern cannot be predicted, unless modified by other colour modifying genes. It can only pass on allele W18 to its offspring.

W18/W18

E/E or E/e + A/A or A/a

Brown/bay with Dominant White pattern

Dominant White pattern. Two copies of the W18 allele. The horse will display some degree of white spotting but the specific pattern cannot be predicted, unless modified by other colour modifying genes. It can only pass on allele W18 to its offspring.

W18/W18

E/E or E/e + a/a

Black with Dominant White pattern

Dominant White pattern. Two copies of the W18 allele. The horse will display some degree of white spotting but the specific pattern cannot be predicted, unless modified by other colour modifying genes. It can only pass on allele W18 to its offspring.

Go to Top